New role for protein could lead to novel treatments for cancer and vascular disease

October 25, 2018

Researchers at York University have found a new role for a well-known protein in the body that may explain, in part, what goes wrong in certain cancers, as well as vascular and neurological disorders.

Beta-catenin, a wide-ranging and important protein for the regulation of cell function from the embryonic stage to adulthood, has already been implicated in the development of certain cancers, including colon, breast, leukemia and melanoma.

Lead researcher, biology Professor John McDermott of the Faculty of Science and his team, have found new intracellular interactions between beta-catenin and other proteins, which highlight a previously unknown role for this protein.

They show that beta-catenin not only has a role in gene expression, but it is also implicated in the control of messenger ribonucleic acid (mRNA) translation - the process by which genetic information is translated into protein in the machinery of the cell.

The findings surprised the researchers. "Beta-catenin is known to have an expansive role in cell biology, including a role in the nucleus in gene expression and at cell membranes, but this finding points to a new, and potentially important role for this 'jack-of-all-trades' protein," said McDermott. "It's a novel role for beta-catenin which was previously unknown despite there being thousands of published papers about this protein in the scientific literature."

In collaboration with the Bayfield lab at York, they found evidence that beta-catenin is recruited by the fragile X mental retardation protein (FMRP) to the cellular machinery to help regulate the translation of mRNA into protein. mRNA carries the genetic information about amino acid sequences in proteins, which it copies from the DNA.

The research indicates that beta-catenin, when recruited to the translation machinery, represses translation. Upon appropriate signals, it then leaves this complex to allow cellular protein production to be increased. If proper regulation doesn't happen at this step, it could contribute to problems associated with some cancers and neurological diseases.

This newly found role for beta-catenin is important as it provides a window into a process that was previously unknown and that can potentially lead to the development of novel therapeutic interventions.

"The next steps are to try to target these novel properties of beta-catenin in various disease states," said McDermott.
-end-
The research paper, FMRP recruitment of beta-catenin to the translation pre-initiation complex represses translation, is published today in EMBO Reports.

York University

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.