New tools for creating mirrored forms of molecules

October 25, 2018

One of the biggest challenges facing synthetic chemists is how to make molecules of only a particular "handedness." Molecules can come in two shapes that mirror each other, just like our left and right hands. This characteristic, called chirality, can be found in biological molecules like sugars and proteins, which means that drug designers often want to develop medicines that are only left- or right-handed. It's a bit like designing the ideal handshake.

Chemists have developed ways to separate the left- and right-handed forms, or enantiomers, of a molecule--such as molecular sieves that permit the passage of just one form. Another more sought-after technique is to create, from scratch, only the desired enantiomer and not its mirror-image form. In a new study, published October 18 in Nature, Gregory Fu, Caltech's Norman Chandler Professor of Chemistry, and his team do just that, demonstrating a new method for making molecules with carbon-carbon bonds (virtually all pharmaceuticals contain carbon-carbon bonds) in only one of their handed forms, while using abundant, inexpensive materials.

"This method can make the discovery and synthesis of bioactive compounds, such as pharmaceuticals, less expensive and less time-consuming than was possible with previous methods," says Fu. "A drug developer could use our method to more easily make libraries of candidate drugs, which they would then test for a desired activity."

In the new report, the researchers demonstrate that they can run their hand-selecting reactions using inexpensive materials, including a nickel catalyst, an alkyl halide, a silicon hydride, and an olefin. Olefins are molecules that contain carbon-carbon double bonds, and they are commonly found in organic molecules. In 2005, Bob Grubbs, the Victor and Elizabeth Atkins Professor of Chemistry at Caltech, won the Nobel Prize in Chemistry for coming up with a method for swapping atoms in and out of olefins at will, a finding that led to better ways to make olefins for industrial purposes.

The Fu team created various classes of compounds with a specific chirality, including molecules known as beta-lactams, of which the antibiotic penicillin is a member.

"The nickel catalysts work like the mold of a glove, shaping a molecule into the desired left or right hand. You could, in theory, use our method to more easily make a series of penicillin-like molecules, for example," says Fu.

Molecules with different handedness can have surprisingly different traits. The artificial sweetener aspartame has two enantiomers--one tastes sweet while the other has no taste. The molecule carvone smells like spearmint in one form and like caraway in the other. Medicines too can have different effects depending on their handedness. Ibuprofen, also known by one of its brand names, Advil, contains both left- and right-handed forms, but only one version is therapeutic.

In the future, Fu and his colleagues plan to further develop their method--in particular, they want to be able to control the handedness at two sites within a molecule rather than just one, providing drug designers with even more flexibility.
-end-
The study, titled, "Catalytic Enantioconvergent Coupling of Secondary and Tertiary Electrophiles with Olefins," was funded by the National Institutes of Health and the Gordon and Betty Moore Foundation (via the Caltech Center for Catalysis and Chemical Synthesis). Other authors include Caltech postdoctoral scholars Zhaobin Wang and Haolin Yin.

California Institute of Technology

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.