Novel material could make plastic manufacturing more energy-efficient

October 25, 2018

An innovative filtering material may soon reduce the environmental cost of manufacturing plastic. Created by a team including scientists at the National Institute of Standards and Technology (NIST), the advance can extract the key ingredient in the most common form of plastic from a mixture of other chemicals--while consuming far less energy than usual.

The material is a metal-organic framework (MOF), a class of substances that have repeatedly demonstrated a talent for separating individual hydrocarbons from the soup of organic molecules produced by oil refining processes. MOFs hold immense value for the plastic and petroleum industries because of this capability, which could allow manufacturers to perform these separations far more cheaply than standard oil-refinement techniques.

This promise has made MOFs the subject of intense study at NIST and elsewhere, leading to MOFs that can separate different octanes of gasoline and speed up complex chemical reactions. One major goal has proved elusive, though: an industrially preferred method for wringing out ethylene--the molecule needed to create polyethylene, the plastic used to make shopping bags and other everyday containers.

However, in today's issue of the journal Science, the research team reveals that a modification to a well-studied MOF enables it to separate purified ethylene out of a mixture with ethane. The team's creation--built at The University of Texas at San Antonio (UTSA) and China's Taiyuan University of Technology and studied at the NIST Center for Neutron Research (NCNR)--represents a major step forward for the field.

Making plastic takes lots of energy. Polyethylene, the most common type of plastic, is built from ethylene, one of the many hydrocarbon molecules found in crude oil refining. The ethylene must be highly purified for the manufacturing process to work, but the current industrial technology for separating ethylene from all the other hydrocarbons is a chilly but high-energy process that cools down the crude to more than 100 degrees below zero Celsius.

Ethylene and ethane constitute the bulk of the hydrocarbons in the mixture, and separating these two is by far the most energy-intensive step. Finding an alternative method of separation would reduce the energy needed to make the 170 million tons of ethylene manufactured worldwide each year.

Scientists have been searching for such an alternative method for years, and MOFs appear promising. On a microscopic level, they look a bit like a half-built skyscraper of girders and no walls. The girders have surfaces that certain hydrocarbon molecules will stick to firmly, so pouring a mixture of two hydrocarbons through the right MOF can pull one kind of molecule out of the mix, letting the other hydrocarbon emerge in pure form.

The trick is to create a MOF that allows the ethylene to pass through. For the plastics industry, this has been the sticking point.

"It's very difficult to do," said Wei Zhou, a scientist at the NCNR. "Most MOFs that have been studied grab onto ethylene rather than ethane. A few of them have even demonstrated excellent separation

performance, by selectively adsorbing the ethylene. But from an industrial perspective you would prefer to do the opposite if feasible. You want to adsorb the ethane byproduct and let the ethylene pass through."

The research team spent years trying to crack the problem. In 2012, another research team that worked at the NCNR found that a particular framework called MOF-74 was good for separating a variety of hydrocarbons, including ethylene. It seemed like a good starting point, and the team members scoured the scientific literature for additional inspiration. An idea taken from biochemistry finally sent them in the right direction.

"A huge topic in chemistry is finding ways to break the strong bond that forms between carbon and hydrogen," said UTSA professor Banglin Chen, who led the team. "Doing that allows you to create a lot of valuable new materials. We found previous research that showed that compounds containing iron peroxide could break that bond."

The team reasoned that to break the bond in a hydrocarbon molecule, the compound would have to attract the molecule in the first place. When they modified MOF-74's walls to contain a structure similar to the compound, it turned out the molecule it attracted from their mixture was ethane.

The team brought the MOF to the NCNR to explore its atomic structure. Using a technique called neutron diffraction, they determined what part of the MOF's surface attracts ethane --a key piece of information for explaining why their innovation succeeded where other efforts have fallen short.

"Without the fundamental understanding of the mechanism, no one would believe our results," Chen said. "We also think that we can try to add other small groups to the surface, maybe do other things. It's a whole new research direction and we're very excited."

While Zhou said the team's modified MOF does work efficiently, it may require some additional development to see action at a refinery.

"We proved this route is promising," Zhou said, "but we're not claiming our materials perform so well they can't be improved. Our future goal is to dramatically increase their selectivity. It's worth pursuing further."
-end-
Paper: L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou and B. Chen. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science. (To be published October 26, 2018. DOI: TBD.)

National Institute of Standards and Technology (NIST)

Related Hydrocarbons Articles from Brightsurf:

Room temperature conversion of CO2 to CO: A new way to synthesize hydrocarbons
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.

A new synthesis method for three-dimensional nanocarbons
A Nagoya University team has developed a new method of synthesis for three-dimensional nanocarbons, utilizing a catalytic reaction to connect benzene rings and create an eight-membered ring structure.

Melting properties determine biological functions of cuticular hydrocarbon layer of ants
The bodies of ants are covered with wax-like substances known as cuticular hydrocarbons (CHCs) that serve communication as well as protection against desiccation.

Newly found bacteria fights climate change, soil pollutants
Cornell University researchers have found a new species of soil bacteria that is particularly adept at breaking down organic matter, including the cancer-causing chemicals that are released when coal, gas, oil and refuse are burned.

The catalyst that removes CO2 and produces hydrocarbons
Water is split into hydrogen and oxygen by electrolysis, but if CO2 is also added to the mixture, compounds can be generated to make textiles, diapers and even spirits.

The power of going small: Copper oxide subnanoparticle catalysts prove most superior
Scientists at Tokyo Tech have shown that copper oxide particles on the sub-nanoscale are more powerful catalysts than those on the nanoscale.

All-in-one: New microbe degrades oil to gas
The tiny organisms cling to oil droplets and perform a great feat: As a single organism, they may produce methane from oil by a process called alkane disproportionation.

US military consumes more hydrocarbons than most countries -- massive hidden impact on climate
Research by social scientists from Durham University and Lancaster University shows the US military is one of the largest climate polluters in history, consuming more liquid fuels and emitting more CO2e (carbon-dioxide equivalent) than most countries.

Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.

Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.

Read More: Hydrocarbons News and Hydrocarbons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.