Mysterious microproteins have major implications for human disease

October 25, 2019

LA JOLLA--(October 25, 2019) As the tools to study biology improve, researchers are beginning to uncover details into microproteins, small components that appear to be key to some cellular processes, including those involved with cancer. Proteins are made up of chains of linked amino acids and the average human protein contains around 300 amino acids. Meanwhile, microproteins have fewer than 100 amino acids.

One such microprotein is the 54-amino acid microprotein called PIGBOS, which Salk scientists recently showed contributes to mitigating cell stress. The work, published on October 25, 2019, in the journal Nature Communications, indicates that PIGBOS could be a target for human disease.

"This study is exciting because cell stress is important in a number of different diseases, including cancer and neurodegeneration," says Salk Professor Alan Saghatelian, co-corresponding author of the study. "By understanding the mechanisms behind these diseases, we think we'll have a better shot at treating them."

The study began when Salk postdoctoral researcher and first author Qian Chu detected PIGBOS in mitochondria, small organelles that power important cell functions. Chu wondered what PIGBOS' role could be. He knew it wouldn't be easy to find the answer. Researchers had previously noted the gene that could code for PIGBOS, but no one knew where to find the protein or what it did in cells.

That's when the team reached out to co-corresponding author Uri Manor, director of the Waitt Advanced Biophotonics Core Facility at Salk. Manor's team uses tools like fluorescent protein tags to locate proteins and see what they are doing in cells.

"Only now do we really have the sophisticated tools to probe interactions between proteins and see how they work and how they are regulated," says Manor.

But Manor ran into a roadblock when he tried to attach a common tag, called green florescent protein (GFP), to PIGBOS. The microprotein was just too small relative to the size of GFP. Manor's team solved this problem by trying a less common approach called split GFP, where they fused just a small part of GFP, called a beta strand, to PIGBOS.

At last, the researchers could see PIGBOS and study how it interacted with other proteins. As they mapped PIGBOS' location, they realized that it sits on the outer membrane of the mitochondria, poised to make contact with proteins on other organelles. They were surprised to see PIGBOS interacting with a protein called CLCC1, which is part of an organelle called the endoplasmic reticulum (ER).

"PIGBOS is like a connection to link mitochondria and ER together," says Chu. "We hadn't seen that before in microproteins--and it's rare in just normal proteins."

The researchers found that PIGBOS actually communicates with CLCC1 to regulate stress in the ER. Without PIGBOS, the ER is more likely to experience stress, which leads to a chain of events where the cell tries to clear out harmful misshapen proteins (called the unfolded protein response). If the cell fails to dispose of these proteins, it will initiate a self-destruct sequence and die.

The scientists were not expecting to see a role for a mitochondrial protein in the unfolded protein response. This new understanding of PIGBOS opens the door to future therapies that can target cell stress.

"Going forward, we might consider how PIGBOS is involved in disease like cancer," says Chu. "In cancer patients, the ER is more stressed than in a normal person, so ER stress regulation could be a good target."

The researchers are interested in studying the roles of other mitochondrial proteins in ER stress, and in exploring how PIGBOS works in an animal model. The team is also forging ahead in characterizing the vast library of microproteins that may be crucial in cell biology.

"Microproteins represent a fledgling field," says Saghatelian. "But I think this work has really impacted our understanding the impact that microproteins can have on biochemistry and cell biology."

Manor adds, "PIGBOS represents one of a limited set of microproteins that anyone has gone through the effort to characterize. And lo and behold it actually has a very important role."
-end-
Other authors of the study included Thomas F. Martinez, Sammy Weiser Novak, Cynthia J. Donaldson, Dan Tan, Joan M. Vaughan, Tina Chang, Jolene K. Diedrich, Leo Andrade, Andrew Kim and Tong Zhang of Salk.

The research was supported by the National Institutes of Health (R01GM102491, P30 014195, NS072031, P30 CA014195), the Leona M. and Harry B. Helmsley Charitable Trust grant, Dr. Frederick Paulsen Chair/Ferring Pharmaceuticals, the George E. Hewitt Foundation for Medical Research, the Anderson Foundation, the Waitt Foundation, and a National Institutes of Health F32 fellowship (GM123685) and Pioneer Fellowship.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.