Mountain streams emit a surprising amount of CO2

October 25, 2019

Mountains cover 25% of the Earth's surface, and the streams draining these mountains account for more than a third of the global runoff. But the role that mountain streams play in global carbon fluxes has not yet been evaluated; until now scientists have focused mainly on streams and rivers in low-altitude tropical and boreal regions.

Åsa Horgby, a PhD student at EPFL's Stream Biofilm and Ecosystem Research Laboratory (SBER), along with a team of international scientists has performed the first large-scale study of the CO2 emissions of mountain streams and their role in global carbon fluxes. They found that these streams have a higher average CO2 emission rate per square meter than streams at lower altitudes, due in part to the additional turbulence caused as water flows down mountain slopes. So even though these streams make up just 5% of the global surface area of the fluvial networks, they likely account for 10% to 30% of CO2 emissions from these networks. The scientists' findings were published today in Nature Communications.

Developing a new model

The research team drew on a study published this past February in Nature Geosiences, which found that gas exchange velocities across the air-water interface in mountain streams occurs 100 times faster than previously thought. Starting from mountain streams in the Canton of Valais, EPFL researchers were able to improve a calculation method that until then had been the standard.

In their new study, the scientists collected big environmental data from the streams draining the world's main mountain ranges, specifically focusing on their hydrologic and geomorphologic properties as well as on the soil organic carbon content within the catchments. Then they used these big data to develop a model to estimate the natural CO2 emissions from more than 1.8 million mountain streams worldwide.

Finding out where the CO2 comes from

"We have known for a number of years that freshwater ecosystems emit roughly the same amount of CO2 that oceans absorb, but we had never before done rigorous studies on the role of the countless mountain streams for the global CO2 fluxes. Until now they were aqua incognita," says Tom Battin, the head of SBER and the paper's corresponding author. "But our latest findings now open up exciting new research avenues, such as to better understand where all that CO2 comes from and how we can more accurately account for the world's alpine regions in our assessments of the global carbon cycle."

The scientists' findings seem to indicate that the CO2 comes from geological sources, given that carbonate rock dominates geology in numerous regions around the world. These rocks were formed from "skeletal" components of marine microorganisms that lived millions of years ago when Earth was largely covered by oceans.

A step forward

Although these findings mark an important step forward, numerous uncertainties remain. According to Battin, additional measurements in mountain streams around the world are required to better constrain uncertainties. Furthermore, long-term monitoring of carbon fluxes in mountain streams is critical to understand how climate change affects their biogeochemistry. "We are just starting to discover the role of mountain streams for the global carbon cycle," says Battin. "These are exciting times for environmental sciences".
Åsa Horgby, Pier-Luigi Segatto, Enrico Bertuzzo, Ronny Lauerwald, Bernhard Lehner, Amber J. Ulseth, Torsten W. Vennemann & Tom J. Battin, "Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains," Nature Communications, 25 October 2019.

Ecole Polytechnique Fédérale de Lausanne

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to