Nav: Home

Fighting the herpes virus

October 25, 2019

New insights into preventing herpes infections have been published in Nature Communications. Researchers from the Berlin Institute for Medical Systems Biology (BIMSB) at the MDC used single-cell RNA sequencing to better understand the viral infections.

If your lip starts to tingle and itch, it often means that you're about to get a cold sore. The result is small, painful blisters filled with the highly contagious herpes simplex virus (HSV). About 80 percent of the global population carries the herpes simplex virus type 1 (HSV-1). Once a person contracts the virus, it remains in the body for the rest of their life and usually goes entirely unnoticed. In rare cases, such as in newborns or people with weak immune systems, the herpes virus can cause inflammation of the brain or lungs.

Now a group of researchers is examining exactly what happens inside individual cells during an infection. The head of the team is Professor Markus Landthaler of the Berlin Institute for Medical Systems Biology (BIMSB) at the Max Delbrueck Center for Molecular Medicine (MDC). Molecular biologists and bioinformaticians work closely together here, and this also applies to Emanuel Wyler and Vedran Franke, the two lead authors of a new study on HSV-1 infections. The paper has been published in the open-access journal Nature Communications.

Inhibiting the herpes infection

At BIMSB, bioinformatician Franke develops algorithms that allow him to predict the probability of infection progressing in individual cells. Wyler and Franke wanted to know exactly what might encourage or slow the infection. They investigated differences in the way the infection progresses in individual cells and found that the NRF2 transcription factor plays a major role. The authors say that NRF2 activation slows the progress of the infection. "I visualized changes in the regulation of each gene we investigated in a single cell. This showed us that the activation level of the NRF2 transcription factor can be a marker for temporary resistance to HSV-1 infection," says Franke. The condition of the cell also seems to be decisive. They found that a cell is more vulnerable to HSV-1 infection during some phases of the cell cycle than others.

The study also presents another finding: A drug that is currently being tested for patients with chronic kidney disease could inhibit herpes infection by activating the NRF2 transcription factor. When the herpes virus enters host cells, it brings its own genetic information with it. This means that both human and virus genes are activated in the infected cells. When the team treated these cells with the kidney drug - bardoxolone methyl - the virus became less productive. It activated fewer of its own genes, which would normally fuel the infection. The authors believe this is due to the drug's effect on the NRF2 transcription factor.

Precise data thanks to single-cell RNA sequencing

To date, few researchers have investigated an acute viral infection as comprehensively as the BIMSB team. Its work relies on a method that has been in use at the MDC since 2016: single-cell RNA sequencing. Conventional sequencing would allow the researchers to find out which genes in the investigated cells were active on average, but differences in the cells would not be visible. The information produced with these methods is a bit like a fruit smoothie: "If I put ten types of fruit into a blender, I can roughly tell that the smoothie contains, say blackberries, when I taste it," says Wyler. "With single-cell RNA sequencing, we aren't making a smoothie - we're making a fruit salad. I can immediately identify the blackberries and say exactly how many are in the salad."

Wyler and Franke collaborated very closely to understand and compare the data. In the lab, the team investigated about 12,000 human skin cells infected with HSV-1. For each cell, the new sequencing method produced a separate data set containing information about the activated genes. "If you've got 12,000 cells and 3,000 analyzed genes, then looking at a huge excel spreadsheet isn't going to be much help," says Wyler.

Researchers have previously used conventional RNA sequencing to identify roughly 70 HSV-1 genes that are activated in the host cell. Up until now, says Wyler, it was only known that the genes US1 and UL54 are active in a group of cells at the same time. The new study shows that some cells activate only one of the two genes - "but we don't know why just one of them is activated." Wyler and Franke say that all the results presented in their paper were only possible with single-cell RNA sequencing.

Blueprint for further research

The herpes virus is a good research model because it is relatively easy to work with in the laboratory. The authors see their work as a blueprint showing how single-cell RNA sequencing can help us understand viral infections. They are already planning to use the method to analyze two more viruses. Working with Professor Christian Drosten from Charite - Universitaetsmedizin Berlin and with virologists from Freie Universitaet Berlin, Wyler and Franke hope to research another type of herpes and coronaviruses. In humans, coronaviruses can cause colds and occasionally severe respiratory diseases.
-end-
Literature

Emanuel Wyler, Vedran Franke et al. (2019): "Single-cell RNA-sequencing of Herpes simplex virus 1-infected cells identifies NRF2 activation as an antiviral program." Nature Communications, 10.1038/s41467-019-12894-z

The Max Delbrueck Center for Molecular Medicine

The Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrueck, who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC's mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent, and fight it better and more effectively. In these efforts the MDC cooperates with Charite - Universitaetsmedizin Berlin and the Berlin Institute of Health (BIH) as well as with national partners such as the German Center for Cardiovascular Research (DZHK) and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just under 1,300 of them in scientific research. The MDC is funded by the German Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent), and is a member of the Helmholtz Association of German Research Centers. http://www.mdc-berlin.de

Landthaler Lab (https://www.mdc-berlin.de/landthaler)

It takes antisense to make sense of herpes infections (https://www.mdc-berlin.de/news/news/it-takes-antisense-make-sense-herpes-infections)

Press release: Tracking development cell by cell is 'Breakthrough of the Year' (https://www.mdc-berlin.de/news/press/tracking-development-cell-cell-breakthrough-year-berlin-based-mdc-hot-spot-such-research)

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Infection Articles:

Halving the risk of infection following surgery
New analysis by the University of Leeds and the University of Bern of more than 14,000 operations has found that using alcoholic chlorhexidine gluconate (CHG) halves the risk of infection in certain types of surgery when compared to the more commonly used povidone-iodine (PVI).
How plants shut the door on infection
A new study by an international team including University of Maryland scientists has discovered the key calcium channel responsible for closing plant pores as an immune response to pathogen exposure.
Sensing infection, suppressing regeneration
UIC researchers describe an enzyme that blocks the ability of blood vessel cells to self-heal.
Boost to lung immunity following infection
The strength of the immune system in response to respiratory infections is constantly changing, depending on the history of previous, unrelated infections, according to new research from the Crick.
Is infection after surgery associated with increased long-term risk of infection, death?
Whether experiencing an infection within the first 30 days after surgery is associated with an increased risk of another infection and death within one year was the focus of this observational study that included about 660,000 veterans who underwent major surgery.
Revealed: How E. coli knows how to cause the worst possible infection
The discovery could one day let doctors prevent the infection by allowing E. coli to pass harmlessly through the body.
UK study shows most patients with suspected urinary tract infection and treated with antibiotics actually lack evidence of this infection
New research presented at this week's European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) in Amsterdam, Netherlands (April 13-16, 2019) shows that only one third of patients that enter the emergency department with suspected urinary tract infection (UTI) actually have evidence of this infection, yet almost all are treated with antibiotics, unnecessarily driving the emergence of antimicrobial resistance.
Bacteria in urine doesn't always indicate infection
Doctors should think carefully before testing patients for a urinary tract infection (UTI) to avoid over-diagnosis and unnecessary antibiotic treatment, according to updated asymptomatic bacteriuria (ASB) guidelines released by the Infectious Diseases Society of America (IDSA) and published in Clinical Infectious Diseases.
Subsidies for infection control to healthcare institutions help reduce infection levels
Researchers compared three types of infection control subsidies and found that under a limited budget, a dollar-for-dollar matching subsidy, in which policymakers match hospital spending for infection control measures, was the most effective at reducing the number of hospital-acquired infections.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
More Infection News and Infection Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.