Deflating beach balls and drug delivery

October 25, 2019

Many natural microscopic objects - red blood cells and pollen grains, for example - take the form of distorted spheres. The distortions can be compared to those observed when a sphere is 'deflated'; so that it steadily loses internal volume. Until now, most of the work done to understand the physics involved has been theoretical. Now, however, Gwennou Coupier and his colleagues at Grenoble Alps University, France have shown that macroscopic-level models of the properties of these tiny spheres agree very well with this theory. The new study, which has implications for targeted drug delivery, was recently published in EPJ E.

Generically, these microscopic objects share their morphology and several other properties with macroscopic thin, spherical shells. Coupier and his team chose to use macroscopic shells as a model because measuring the volumes of and stresses on microscopic shells is extremely challenging from a technical standpoint. Furthermore, macroscopic shells are commercially and quite affordably available. The researchers set up a model system using hollow balls of different sizes and skin thicknesses, ranging from beach balls to squash balls. They were both filled with and submerged in water, and their morphology was observed and pressures measured as some of the water inside was removed.

The apparatus was both simple - it was designed with the help of undergraduate students - and in some ways rather challenging. A manometer used to measure the pressure of 1 atmosphere (the amount of pressure it takes to cause a squash ball to buckle) required a 10-metre-high tube that could only be set up in the lab staircase. The researchers found that the same generic description of buckling that had been predicted theoretically held true in all the varied 'real-life' cases tested beyond the range initially expected.

Coupier has found that deflating and inflating microscopic shells can induce directed motion, which could, for example, be used to help target drug delivery to a tumour. He hopes that this new understanding of the mechanics of deflation might allow this motion to be better controlled.
-end-
Reference

G. Coupier, A. Djellouli and C. Quilliet (2019), Let's deflate that beach ball, Eur. Phys. J. E 42:129. DOI 10.1140/epje/i2019-11900-2

Springer

Related Atmosphere Articles from Brightsurf:

ALMA shows volcanic impact on Io's atmosphere
New radio images from ALMA show for the first time the direct effect of volcanic activity on the atmosphere of Jupiter's moon Io.

New study detects ringing of the global atmosphere
A ringing bell vibrates simultaneously at a low-pitched fundamental tone and at many higher-pitched overtones, producing a pleasant musical sound. A recent study, just published in the Journal of the Atmospheric Sciences by scientists at Kyoto University and the University of Hawai'i at Mānoa, shows that the Earth's entire atmosphere vibrates in an analogous manner, in a striking confirmation of theories developed by physicists over the last two centuries.

Estuaries are warming at twice the rate of oceans and atmosphere
A 12-year study of 166 estuaries in south-east Australia shows that the waters of lakes, creeks, rivers and lagoons increased 2.16 degrees in temperature and increased acidity.

What makes Saturn's atmosphere so hot
New analysis of data from NASA's Cassini spacecraft found that electric currents, triggered by interactions between solar winds and charged particles from Saturn's moons, spark the auroras and heat the planet's upper atmosphere.

Galactic cosmic rays affect Titan's atmosphere
Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn.

Physics: An ultrafast glimpse of the photochemistry of the atmosphere
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

Using lasers to visualize molecular mysteries in our atmosphere
Molecular interactions between gases and liquids underpin much of our lives, but difficulties in measuring gas-liquid collisions have so far prevented the fundamental exploration of these processes.

The atmosphere of a new ultra hot Jupiter is analyzed
The combination of observations made with the CARMENES spectrograph on the 3.5m telescope at Calar Alto Observatory (Almería), and the HARPS-N spectrograph on the National Galileo Telescope (TNG) at the Roque de los Muchachos Observatory (Garafía, La Palma) has enabled a team from the Instituto de Astrofísica de Canarias (IAC) and from the University of La Laguna (ULL) to reveal new details about this extrasolar planet, which has a surface temperature of around 2000 K.

An exoplanet loses its atmosphere in the form of a tail
A new study, led by scientists from the Instituto de Astrofísica de Canarias (IAC), reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field propelled by the ultraviolet radiation of its star.

Iron and titanium in the atmosphere of an exoplanet
Exoplanets can orbit close to their host star. When the host star is much hotter than our sun, then the exoplanet becomes as hot as a star.

Read More: Atmosphere News and Atmosphere Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.