Retrieving physical properties from two-colour laser experiments

October 25, 2019

When photons of light interact with particles of matter, a diverse variety of physical processes can unfold in ultrafast timescales. To explore them, physicists currently use 'two-colour pump-probe' experiments, in which an ultrashort, infrared laser pulse is first fired at a material, causing its constituent electrons to move. After a controllable delay, this pulse is followed by a train of similarly short, extreme-ultraviolet pulses, ionising the material. By measuring the total ionisation following the pulses along with the resulting electron energy spectra, physicists can theoretically learn more about ultrafast, light-matter interactions. In new research published in EPJ D, an international team of physicists, led by Eric Suraud at the University of Toulouse, discovered that these signals are in fact dominated by the less interesting interplay between electrons and the initial infrared laser. They show that more useful information is buried deeper within these signals, and requires sophisticated techniques to disentangle it.

The team's discoveries could enable physicists to learn more about processes such as vision and photosynthesis, as well as technologies like solar panels; all of which are driven by ultrafast interactions between light and matter. Their analytical and numerical analyses offer the first indications of the mathematical techniques that can be used to extract physically useful information from raw, pump-probe data. They also provide an initial idea about how this information can be distinguished from the signatures arising from the initial infrared laser.

Suraud and colleagues obtained these findings by considering the responses of systems including helium atoms, diatomic nitrogen molecules, and ionised clusters of sodium, to two-colour pump-probe experiments. The team says their results call for improvements to both experimental and theoretical approaches to the technique. In the future, this could potentially allow physicists to develop robust analytical and numerical toolsets for studying ultrafast interactions between light and matter.
-end-
Reference

T. Brabec, P. M. Dinh, C. Z. Gao, C. R. McDonald, P-G. Reinhard, E. Suraud (2019) Physical mechanisms encoded in photoionization yield from IR+XUV setups, European Physical Journal D 73: 212, DOI: 10.1140/epjd/e2019-90507-4

Springer

Related Solar Panels Articles from Brightsurf:

Multi-institutional team extracts more energy from sunlight with advanced solar panels
Researchers working to maximize solar panel efficiency said layering advanced materials atop traditional silicon is a promising path to eke more energy out of sunlight.

Thin-skinned solar panels printed with inkjet
Efficient, yet exceptionally light organic solar cells created entirely by inkjet printing.

Green energy and better crops: Tinted solar panels could boost farm incomes
Researchers have demonstrated the use of tinted, semi-transparent solar panels to generate electricity and produce nutritionally-superior crops simultaneously, bringing the prospect of higher incomes for farmers and maximising use of agricultural land.

NREL research points to strategies for recycling of solar panels
Researchers at the National Renewable Energy Laboratory (NREL) have conducted the first global assessment into the most promising approaches to end-of-life management for solar photovoltaic (PV) modules.

Merging solar cell and liquid battery produces long-lasting solar storage
Combining liquid chemical battery technology with perovskite solar cells has led to a new record in solar energy conversion within a single device.

Merging solar cell and liquid battery produces efficient, long-lasting solar storage
Chemists at the University of Wisconsin-Madison and their collaborators have created a highly efficient and long-lasting solar flow battery, a way to generate, store and redeliver renewable electricity from the sun in one device.

Trapping the Sun: New thin-film technology uses sustainable components for solar panels
Most common thin-film solar panels consist of expensive rare-earth elements like indium and gallium, or highly toxic metals like cadmium.

"Bright spot" during COVID-19: Increased power from solar panels thanks to cleaner air
During the COVID-19 pandemic, one unexpected outcome in cities around the world has been a reduction in air pollution, as people stay home to avoid contracting the coronavirus.

Double-sided solar panels that follow the sun prove most cost effective
Solar power systems with double-sided (bifacial) solar panels--which collect sunlight from two sides instead of one--and single-axis tracking technology that tilts the panels so they can follow the sun are the most cost effective to date, researchers report in the journal Joule.

Moisture-sucking gels give solar panels the chills
Polymers that absorb water from the atmosphere can make it easier to run photovoltaic devices in hot climates.

Read More: Solar Panels News and Solar Panels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.