Nerve cell protection free from side effects

October 25, 2019

The hormone erythropoietin (Epo) is a well-known doping substance that has a long history of abuse in endurance sports, such as cycling. In addition to promoting red blood cell production (erythropoiesis), which improves the oxygen supply in the organism, Epo also protects nerve cells from cell death. In order to use this effect to cure neurodegenerative diseases, however, the negative effects caused by Epo through the stimulated formation of red blood cells need to be prevented. Researchers at the University of Göttingen have now discovered an alternative Epo receptor that could potentially also trigger protective effects in humans without the side effects on erythropoiesis. The results were published in the journal Frontiers in Molecular Neuroscience.

Epo could be used to treat neurodegenerative diseases such as Alzheimer's and Parkinson's or reduce damage after strokes. However, clinical studies have shown severe side effects, which, according to current knowledge, are probably due to Epo's ability to stimulate the production of red blood cells. How could the cell-protective effect of Epo be separated from the effect on blood cell formation? Researchers from the Department of Cellular Neuroscience at the University of Göttingen have identified an alternative Epo receptor. They found that treatment with human Epo also prevents cell death in some insects, although these animals do not possess Epo themselves and do not have the classical Epo receptor involved in human erythropoiesis. Their conclusion: these animals have a different receptor which enables Epo to trigger the cell-protecting mechanisms similar to those in human nerve cells.

In migratory locusts, Professor Ralf Heinrich's team has now been able to show that CRLF3 (cytokine receptor-like factor 3) is just such an alternative Epo receptor. Cultures of nerve cells, taken from brains of locusts, die in the absence of oxygen, similar to the brain cells of stroke patients. By adding human Epo, the locust brain cells can be saved, but only as long as the presence of the CRLF3 receptor in the cells is not artificially suppressed. The research team was able to identify this receptor in a total of 293 different animal species. Among them are 259 vertebrates, including humans.

In evolutionary history, CRLF3 emerged at the same time as the development of the nervous system, which suggests that this receptor plays an important role in nerve cells. The similarity of the protein sequences is surprising: CRLF3 remained remarkably similar from cnidarians (eg jellyfish) to humans. "The important question now is whether the activation of CRLF3 also prevents cell death in our brain," said Nina Hahn, first author of the study. "Structurally, the CRLF3 receptors of locusts and humans are very similar. This leads us to hope that their protective function in the brain is the same."
-end-
Original publication: Nina Hahn et al. The Orphan Cytokine Receptor CRLF3 Emerged with the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts. Frontiers in Molecular Neuroscience (2019), Doi: https://doi.org/10.3389/fnmol.2019.00251

Contact:

Nina Hahn
University of Göttingen
Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology
Department of Cellular Neurobiology
Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
Tel: +49 (0)551 39177964
Email: nina.hahn@uni-goettingen.de
http://www.cellneuro.uni-goettingen.de/member.php

Professor Ralf Heinrich
University of Göttingen
Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology
Department of Cellular Neurobiology
Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
Tel: +49 (0)551 39177958
Email: rheinri1@gwdg.de
https://www.uni-goettingen.de/en/57980.html

University of Göttingen

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.