Reframing Antarctica's meltwater pond dangers to ice shelves and sea level

October 25, 2019

Dangers to ancient Antarctic ice portend a future of rapidly rising seas, but a new study may relieve one nagging fear: that ponds of meltwater fracturing the ice below them could cause protracted chain reactions that unexpectedly collapse floating ice shelves. Though pooled meltwater does fracture ice, ensuing chain reactions appear short-ranged.

Still, massive increases in surface melting due to unusually warm weather can trigger catastrophic ice shelf collapses like that of the iconic shelf "Larsen B," which shattered in 2002. Now, a study led by a researcher at the Georgia Institute of Technology has modeled fracture chain reactions and how much water it would take for a repeat of that rare, epic collapse.

Larsen B's disintegration was preceded by an atypical heatwave that riddled it with meltwater ponds, focusing researchers' attention on pond fracturing, also called hydrofracturing. They discovered that a melt pond hydrofracturing the ice shelf can prompt neighboring ponds to do the same. Concerns grew of possible extensive chain reactions, which the new study addressed.

Too much meltwater

"The chain reactions will not spread that far on the ice shelf," said Alex Robel, an assistant professor in Georgia Tech's School of Earth and Atmospheric Sciences. "Normally, it would take many years for the chain reactions to have an effect on the integrity of the ice shelves. But there's a caveat. Ponds that are close together and growing rapidly deeper could destroy the ice's integrity."

"There is a speed limit in the study that shows that an ice shelf can't collapse ridiculously fast," said co-author Alison Banwell, a glaciology researcher at the University of Colorado Boulder. "However, if it becomes as covered in meltwater ponds very quickly like Larsen B was, it can collapse in a similar way." She added, "Multiple hydrofracture chains originating in different areas of an ice shelf could also lead to a larger-scale ice shelf breakup."

The researchers published their results in the journal Geophysical Research Letters on October 24, 2019. The research was funded by the National Science Foundation and the Cooperative Institute for Research in Environmental Sciences at CU Boulder. An unrelated, recent study reported a record number of meltwater ponds on Antarctica.

"Currently there are not nearly enough ponds on any ice shelf for a repeat of Larsen B, but much meltwater is weighing on ice shelves and contributing damage to them," said Banwell, who helped pioneer hydrofracture research on ice shelves.

Q&A

Broken ice shelves themselves don't add much to sea level. So, why care?

Ice shelves float in the ocean, where they already contribute to sea level, so when they break up or melt, they don't add much more to it. But many ice shelves push back against glaciers on land that do drive up sea level when they enter the ocean.

With the shelf gone, the speed of glacial flow can jump four- to tenfold. Glaciologists were not aware of this until Larsen B, which was a kilometer (0.62 miles) thick with a surface of 3,250 square km (1,250 square miles), splintered within weeks, and glacial flow behind it surged.

"Our research field thought ice shelves weren't too important, then Larsen B showed us that was incorrect. Buttressing by ice shelves really is the thing that stabilizes the glaciers. Few issues are more significant than those that this study addresses," said Brent Minchew, an assistant professor of geophysics at the Massachusetts Institute of Technology.

Minchew was not involved in the study but recently co-published another study that relates to it. The MIT study rules out one absolutely nightmarish scenario of rapid glacier fracture due to the disappearance of ice shelves. But he and the other researchers reiterated that glacial flow nonetheless speeds up strikingly when ice shelves disappear.

Also, most Antarctic ice shelves probably formed in the last ice age, and it could take another ice age to replace them.

How does hydrofracturing work, and how did the study model its effects?

When meltwater ponds on top of cracks in the ice grow heavy, they can hydrofracture the ice.

"The water pressure concentrates down to a point called a crack tip. It tries to push the crack apart and make it deeper, and the ice pushes back. When the water gets deep enough, it can win out and propagate the crack to the bottom of the ice shelf," Robel said.

The water drains down the crack, into the ocean, then the ice hops back up, making new cracks that can trigger neighboring ponds to hydrofracture, too. The study showed that this would encompass only small numbers of ponds.

Conveniently for Robel, who explores ice dynamics with math, physics, and computer science, as ice shelves form, regimented matrices of surface dents appear in them, and that's where the ponds collect.

Robel could apply computer science modeling called cellular automata - known from pixelated matrix-like video games - to model hydrofracture chain reactions. The model even outputs animations that the researchers named "minesweeper plots" after the classic 1990s computer game.

Does the study mean there is less danger than before of glacial flow accelerating?

No, the study simply adds to scientific knowledge, and actually, the flow of some glaciers on Antarctica has already sped up a lot.

"Maybe this mechanism is not something we have to worry as much about. But we shouldn't breathe a sigh of relief because there are plenty of other ways of getting a whole lot of ice out of West Antarctica quickly," Minchew said.

Perhaps the greatest potential for glacier loss is instability where glaciers rest on the ground next to seawater. A study Robel published in July projected that instability to be extremely likely to accelerate sea level rise.

How does this study help advance glacier research?

It makes it easier to look for harbingers of ice shelf damage.

"Looking at the volume of water on the surface of the ice is much easier than looking for stress failures within the ice," said Banwell, who will visit Antarctica in November to study melt ponds on the George IV ice shelf.
-end-
The research was funded by the National Science Foundation (grants NSF PLR-1735715 and NSF PLR-1841607) and by the Cooperative Institute for Research in Environmental Sciences at CU Boulder.

Georgia Institute of Technology

Related Sea Level Articles from Brightsurf:

Sea-level rise will have complex consequences
Rising sea levels will affect coasts and human societies in complex and unpredictable ways, according to a new study that examined 12,000 years in which a large island became a cluster of smaller ones.

From sea to shining sea: new survey reveals state-level opinions on climate change
A new report analyzing state-level opinions on climate change finds the majority of Americans believe in and want action on climate change--but factors like state politics and local climate play important roles.

UM researcher proposes sea-level rise global observing system
University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science researcher Shane Elipot proposes a new approach to monitoring global sea-level rise.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

Larger variability in sea level expected as Earth warms
A team of researchers from the University of Hawai'i (UH) at Mānoa School of Ocean and Earth Science and Technology (SOEST) identified a global tendency for future sea levels to become more variable as oceans warm this century due to increasing greenhouse gas emissions.

Sea-level rise could make rivers more likely to jump course
A new study shows that sea level rise will cause rivers to change course more frequently.

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.

Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.

How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.

As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.

Read More: Sea Level News and Sea Level Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.