Nav: Home

Can solar technology kill cancer cells?

October 25, 2019

EAST LANSING, Mich. - Scientific breakthroughs don't always happen in labs. For Sophia and Richard Lunt, Michigan State University researchers, many of their breakthroughs happen during neighborhood walks.

The married couple's step-by-step approach has revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power. The results, published in the current issue of Scientific Reports, showcases dramatic improvements in light-activated fluorescent dyes for disease diagnosis, image-guided surgery and site-specific tumor treatment.

"We've tested this concept in breast, lung cancer and skin cancer cell lines and mouse models, and so far it's all looking remarkably promising," said Sophia, MSU biochemistry and molecular biologist.

While the cancer applications hold the most possibility, their findings have potential beyond the field of oncology, said Richard, the Johansen Crosby Endowed Professor of chemical engineering and materials science.

"This work has the potential to transform fluorescent probes for broad societal impact through applications ranging from biomedicine to photocatalysis - the acceleration of chemical reactions with light," he said. "Our solar research inspired this cancer project, and in turn, focusing on cancer cells has advanced our solar cell research; it's been an amazing feedback loop."

Prior to the Lunts' combined effort, fluorescent dyes used for therapeutics and diagnostics, aka "theranostics," had shortcomings, such as low brightness, high toxicity to cells, poor tissue penetration and unwanted side effects.

By optoelectronically tuning organic salt nanoparticles used as theranostics, the Lunts were able to control them in a range of cancer studies. Coaxing the nanoparticles into the nontoxic zone resulted in enhanced imaging, while pushing them into the phototoxic - or light-activated - range produced effective on-site tumor treatment.

The key was learning to control the electronics of their photoactive molecules independently from their optical properties and then making the leap to apply this understanding in a new way to a seemingly unrelated field.

Richard had recently discovered the ability to electronically tune these salts from his work in converting photovoltaics into solar glass. Sophia had long studied metabolic pathways unique to cancer cells. It was when the Lunts were discussing solar glass during a walk that they made the connection: Molecules active in the solar cells might also be used to more effectively target and kill cancer cells.

A journey of 1,000 miles

Their walks had rather unscientific beginnings. Shortly after the Lunts met at Princeton University, Richard moved to another university. To maintain their long-distance relationship, they scheduled daily phone calls. Upon their arrival at MSU, individual academic career demands replaced geographic distance as a challenge to their busy lives.

To connect daily, they take CEO-style walks together every evening. The two-mile saunters take place rain or shine, and they often engage in scientific discussions. The three keys to their walks are intentional curiosity, perseverance and the merging of different fields and perspectives, Sophia said.

"We talk science, strategic plans for our careers and our various grants," she said. "We ping ideas off each other. Our continual conversations brainstorming ideas on a particular topic or challenge often lead to those exciting 'aha' moments."

Their walks have helped them push through many challenges.

"Our first experiments did not turn out as expected; I'm surprised that we didn't give up given how crazy the idea seemed at first," Richard said. "Figuring out how to do this research took many walks."

Obviously, the results were worth the hike. Today, Richard designs the molecules; Babak Borhan, MSU chemist, synthesizes and improves them; and Sophia tests their photoactive inventions in cancer cell lines and mouse models.

Future research will work to improve the theranostics' effectiveness, decrease toxicity and reduce side effects. The Lunts have applied for a patent for their work, and they're looking forward to eventually pushing their photoactive molecule findings through clinical trials.

"Though that will take many more walks," Richard said with a smile.
-end-
Additional MSU researchers contributing to the paper include: Deanna Broadwater, Matthew Bates, Mayank Jayaram, Margaret Young, Jianzhou He, Austin Raithel, Thomas Hamann and Wei Zhang.

(Note for media: Please include a link to the original paper in online coverage: https://www.nature.com/articles/s41598-019-51593-z)

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Michigan State University

Related Cancer Cells Articles:

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.
Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.
Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.
Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.
Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.
New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.