Placing another piece in the dark matter puzzle

October 25, 2019

A team led by Prof Dmitry Budker has continued their search for dark matter within the framework of the "Cosmic Axion Spin Precession Experiment" (or "CASPEr" for short). The CASPEr group conducts their experiments at the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM). CASPEr is an international research program that uses nuclear magnetic resonance techniques to identify and analyze dark matter.

Very little is known about the exact nature of dark matter. Currently, some of the most promising dark matter candidates are extremely light bosonic particles such as axions, axion-like particles or even dark photons. "These can also be regarded as a classical field oscillating at a certain frequency. But we can't yet put a figure on this frequency - and therefore the mass of the particles," explains Dmitry Budker. "That is why in the CASPEr research program we are systematically investigating different frequency ranges looking for hints of dark matter."

For this, the CASPEr team is developing various special nuclear magnetic resonance (NMR) techniques, each targeted at a specific frequency range and therefore at a specific range of dark-matter particle masses. NMR generally relies on the fact that nuclear spins react to magnetic fields oscillating at a specific "resonance frequency". The resonance frequency is tuned via a second, usually static magnetic field. The fundamental idea of the CASPEr research program is that a dark matter field can influence the nuclear spins in the same way. As the Earth moves through this field, nuclear spins behave as if they would experience an oscillating magnetic field, thus generating a dark matter induced NMR spectrum.

In the current work, first author Antoine Garcon and his colleagues used a more exotic technique: ZULF (zero- to ultralow-field) NMR. "ZULF NMR provides a regime where nuclear spins interact more strongly with each other than they do with an external magnetic field," says corresponding author Dr. John W Blanchard. "In order to make the spins sensitive to dark matter, we only have to apply a very small external magnetic field, which is much easier to stabilize." Furthermore, for the first time the researchers examined ZULF NMR spectra of 13C-formic acid with respect to dark-matter-induced sidebands, employing a new analysis scheme to coherently average sidebands of arbitrary frequency over multiple measurements.

This particular form of sideband analysis enabled the scientists to search for dark matter in a new frequency range. No dark matter signal was detected, as the CASPEr team reports in the latest edition of Science Advances, allowing the authors to rule out ultralight dark matter with couplings above a particular threshold. At the same time, these results provide another piece of the dark matter puzzle and complement previous results from the CASPEr program reported in June, when the scientists explored even lower freuencies, using another specialized NMR method called "comagnetometry".

"Like a jigsaw puzzle, we combine various pieces within the CASPEr program to further narrow down the scope of the dark matter search," asserts Dmitry Budker. John Blanchard adds: "This is just the first step. We are currently implementing several very promising modifications to increase our experiment's sensitivity."
-end-


Johannes Gutenberg Universitaet Mainz

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.