Novel formulation of an injectable drug to treat joint inflammation acts for ten days

October 25, 2019

Thanks to a new injectable formula, Brazilian researchers have succeeded in enhancing the efficacy and prolonging the duration of action of a drug commonly used to treat joint inflammation.

The innovation involves lipid nanoparticles containing a high concentration of the active principle, which is gradually released into the affected joint to sustain the desired effect for up to ten days without the need for repeated administration of the drug.

In an article published in the journal Scientific Reports, researchers affiliated with the University of Campinas (UNICAMP) describe tests of a methodology using the anti-inflammatory drug naproxen in rats with temporomandibular joint (TMJ) inflammation. The TMJ connects the jawbone to the skull.

Temporomandibular disorder is a problem affecting the muscles used in chewing, speaking and other mouth movements.

The study was supported by São Paulo Research Foundation - FAPESP as part of a Thematic Project.

The use of lipid nanoparticles enabled 99.8% of the naproxen to be encapsulated. Results of experiments with animals showed that sustained delivery of the drug to the TMJ significantly reduced the migration of defense cells (leukocytes) to the joint for up to a week and induced low levels of the proinflammatory cytokines IL-1β and TNF-α, which are immune response regulators. These results indicated that the inflammation was minimized.

"The enhanced efficacy of the drug in the inflamed joint was due above all to two strategies: gradual release of naproxen by the lipid nanocapsules into the affected region, and administration by injection [rather than orally]. These two factors prolonged the action of the anti-inflammatory drug without undesirable side effects, such as skin rash or stomach bleeding. Moreover, these results were observed in a joint that is not always effectively treated with this drug," said Eneida de Paula, a professor at UNICAMP's Institute of Biology and last author of the article.

According to the researchers, although the model used in the study was TMJ inflammation, a condition that affects some 10% of the world population, the innovation has potential applications in the treatment of inflammation in other joints.

Right place

The inflammatory process associated with TMJ disorder results in the release of several pro-inflammatory cytokines and other immune signalers, all of which contribute to joint remodeling, cartilage degradation and maintenance of a painful condition in the affected region.

While nonsteroidal anti-inflammatory drugs (NSAIDs) such as naproxen are commonly prescribed for the treatment of TMJ disorder, their efficacy is usually short-lived, lasting up to two days, and frequent readministration of these drugs is typically required.

"With the new injectable formulation, the anti-inflammatory effect lasts longer, and there are no side effects. The anti-inflammatory drug can be aggressive and cause ulcerations," de Paula said. "Another problem is what's known as first-passage metabolism, where the ingested drug is first metabolized by the liver, preventing the entire dose from entering the bloodstream and weakening the action of the drug."

Intra-articular injection is more efficient when administering medications to treat disorders in the TMJ and other joints, but there are also many disadvantages, such as the need for repeat administrations, which tend to be painful and decrease patient compliance.

"Injection into a joint is too painful to be repeated frequently, so we developed a formulation in which the drug is encapsulated and released slowly. This administration strategy and the prolonged effect eliminate the need for reinjections," de Paula said.

Right choice

The researchers designed the new formulation using factorial planning with the aid of computer software and mathematical models that enabled rational selection of the formulation with optimal deliverability and stability in terms of physicochemical and structural properties.

"The key was choosing the right combination of ingredients to make lipid nanoparticles suited to the drug, considering their biocompatibility and capacity to blend with naproxen," de Paula said. "We already knew we should work with lipid nanoparticles because naproxen is hydrophobic [repels water], but instead of testing all possible combinations we deployed a strategy known as factorial planning, whereby we identified the best variables and selected the ideal composition."

The study, which was conducted in partnership with researchers at UNICAMP's Institute of Chemistry, included the creation of a data matrix. "The first tests were empirical. Their aim was to help us confirm whether we could formulate a nanoparticle that would release the drug gradually inside the joint. Next, factorial planning enabled us to test a large number of combinations of ingredients and rationalize the search for the ideal formulation," de Paula explained.

The new formulation completely encapsulates naproxen, delivers the medication in a controlled manner, and remains stable for a year when stored at 25°C.

Factorial planning has been widely used to develop new drugs and is recommended by the US Food and Drug Administration (FDA). "Drug development is much faster and efficient when this strategy is used, as it lets you analyze different variables simultaneously. We're now looking for a company with which to partner for the purpose of conducting clinical trials, after which the method can be commercialized," de Paula said.
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at and visit FAPESP news agency at to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Inflammation Articles from Brightsurf:

3D printed stents that treat inflammation
POSTECH Professor Dong-Woo Cho's research team develops bioink-loaded esophageal stents for treating radiation esophagitis.

New cause of inflammation in people with HIV identified
A new study led by researchers at Boston Medical Center examined what factors could be contributing to this inflammation, and they identified the inability to control HIV RNA production from existing HIV DNA as a potential key driver of inflammation.

Maltreatment tied to higher inflammation in girls
New research by a University of Georgia scientist reveals that girls who are maltreated show higher levels of inflammation at an early age than boys who are maltreated or children who have not experienced abuse.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Inflammation in the brain linked to several forms of dementia
Inflammation in the brain may be more widely implicated in dementias than was previously thought, suggests new research from the University of Cambridge.

Social isolation could cause physical inflammation
Social isolation could be associated with increased inflammation in the body new research from the University of Surrey and Brunel University London has found.

Hydrogels control inflammation to help healing
Researchers test a sampling of synthetic, biocompatible hydrogels to see how tuning them influences the body's inflammatory response.

Why beta-blockers cause skin inflammation
Beta-blockers are often used to treat high blood pressure and other cardiovascular diseases.

The 'inflammation' of opioid use
New research correlates inflammation in the brain and gut to negative emotional state during opioid withdrawal.

Using a common anticonvulsant to counteract inflammation
The interaction between a chromosomal protein called HMGB1 and a cellular receptor called RAGE is known to trigger inflammation.

Read More: Inflammation News and Inflammation Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to