Need for Speed: NSF Pursues Petaflop Computers

October 25, 1996

Kids often race their bicycles, pedaling madly to move ever faster. Then they advance to sedans, but covet sports cars, still wanting to push that envelope of speed.

Computer scientists are no different.

The fastest computers created today are capable of speeds of about a teraflop--a trillion operations per second. Already researchers are looking far ahead, yearning for computers a thousand times faster.

The National Science Foundation, in conjunction with NASA and DARPA, have funded eight research projects to creatively approach a petaflop. These pilot projects will be presented at a workshop this Sunday, Oct. 27, at the Frontiers '96 conference in Annapolis, Maryland.

To put the speeds in terms that people can understand: if the speeds of the world's fastest computers just now being built are like the sailing ships Christopher Columbus used to cross the Atlantic, space shuttle speeds are the goal of this research project. Right now, computer speeds are limited by memory storage and by how fast that memory can be transferred to the working parts of the computer. Even with those issues solved, computers operating at petaflop speeds must be massively parallel--any application must be broken into a million pieces, all calculated at once. To wait to solve problems sequentially slows the computer down.

"The first petaflop computers are going to be difficult to use. One of the goals of this project is to see how friendly can we keep them. You don't want computers only a few experts can use. The architectures must support a reasonable programming model without slowing down," said John Van Rosendale, NSF program manager leading the project.

But why would anyone need a thousand trillion operations per second? Any number of applications are already apparent, from real time nuclear magnetic resonance imaging during surgery, to computer based drug design, astrophysical simulation and modeling of environmental pollution and long term climate changes.

"Until the Internet arrived, we had no real appreciation of its impact. Petaflop computers may be like that: we have only a limited sense of the kind of applications this technology will enable," Van Rosendale said.

The eight Pursuing a Petaflop projects are:

National Science Foundation

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to