Mushrooms, water-repellants more similar than you might think

October 26, 2009

DURHAM, N.C. -- What do spore-launching mushrooms have in common with highly water-repellant surfaces?

According to Duke University engineers, the answer is "jumping" water droplets. As it turns out, the same phenomenon that occurs when it's time for certain mushrooms to eject spores also occurs when dew droplets skitter across a surface that is highly water repellant, or superhydrophobic.

Using a specially designed high-speed camera and microscope set-up, the engineers for the first time captured the actions of tiny water droplets on a man-made superhydrophobic surface, and to their surprise found that the droplets literally jumped straight up and off the surface.

Simply put, when two tiny water droplets - whether on a mushroom's spore or on a water-repellent surface - meet to form a larger drop, enough energy is released in the formation of the new droplet to cause it to "jump" off the surface.

"This spontaneous jumping is powered by the surface energy released when droplets coalesce," said Jonathan Boreyko, a third-year graduate student at Duke's Pratt School of Engineering, who works in the laboratory of Assistant Professor Chuan-Hua Chen. "Because this process involves very tiny droplets at high speeds, no one had captured this phenomenon before."

The results of the team's experiments were published early online in the journal Physics Review Letters.

"A similar phenomenon occurs with the ejection of spores, known as ballistospores, from certain kinds of mushrooms," Boreyko said. "When a drop of water condensate at the base of the spore comes into contact with the wetted spore, it triggers the propulsion of the spore into the air."

Chen and Boreyko's research is the first known engineering reproduction of the ballistospore ejection process.

The work also has immediate applications in energy harvesting and thermal management, Chen said. For example, the spontaneous jumping motion offers an internal mechanism, independent of gravity, to remove condensate from the condensers in power plants.

The superhydrophobic surface used by the researchers is characterized by rows and rows of tiny bumps, covered with even tinier hairs projecting upward. When a water droplet lands on this type of surface, it only touches the ends of the tiny hairs. This creates pockets of air underneath the droplet that keeps it from touching the surface. This cushion of air keeping the droplet aloft is much like a puck in an air-hockey game. The same principle allows water striders to skim along the surface of ponds without falling into the water, Chen said.

"When two of these condensate drops coalesce into one, they jump at very high speeds," Boreyko said. "They move as fast as one meter per second. By taking a side view of the phenomenon, we can plainly see the droplets jump. You wouldn't see it looking down on the surface."

Interestingly, the researchers found that the mechanism used to eject ballistospores is almost identical. The critical size of the droplet on the spore for the jumping to occur is the same as that on the man-made superhydrophobic surface, and spores "jump" off the mushroom at about the same speed.

Chen said knowing how superhydrophobic surfaces are able to repel condensate drops could lead to improvements in many types of systems where heat needs to be removed through condensation.

"Smaller water droplets are much more efficient at transferring heat," Chen explained. "With the jumping mechanism, the average droplet size is about one hundred times smaller.

"In conventional cooling systems, as in big industrial plants, condensate must be removed using external forces for continuous operation," Chen said. "One of the main benefits of this superhydrophobic surface is that it needs no external energy - the coalescing of the droplets provides all the energy needed to remove the condensate."
-end-
Chen's research is supported by the National Science Foundation. Jonathan Boreyko is supported by the Pratt-Gardner Fellowship.

Duke University

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.