Researchers decipher the mecanism of membrane fission

October 26, 2012

A cell is composed of a nucleus which encloses its genetic information and the cytoplasm which is itself confined by an external membrane separating the cell from the outside world. The impermeability of the membrane and its ability to repair itself protect the cell from its environment. Although this membrane resistance is fundamental to the survival of the cell, the cell also needs to let in particles necessary for its proper functioning. The mechanism by which a small region of the cytoplasmic membrane invaginates to form a bud that will then be sectioned off to let molecules and other particles into the cell is known as endocytosis.

However, this natural process remains elusive due to the remarkable resistance of the cell membrane. Aurélien Roux, a professor of biochemistry and member of the National Centres of Competence in Research (NCCR) Chemical Biology, heads a team that focused on dynamin, a protein involved in endocytosis, to try to understand how an ultra-resistant membrane can nevertheless let external elements enter into the cell.

The power of dynamin

Scientists conducted in vitro experiments using artificial membrane tubules with a radius of 10 to 100 nanometres. They discovered that once dynamin is injected into the tube, it polymerises. In other words, it forms a helix around the tube and compresses it until it breaks. Dynamin produces the energy necessary for this constriction by «consuming» GTP molecules, much like a car consumes gasoline.

Based on these experiments, Professor Roux's team observed that the location of the fission is very specific and appears at the boundary between the helix and the membrane. «A change in radius that curves the membrane, caused by the polymerisation of dynamin, induces a stress that promotes the fracture,» states Sandrine Morlot, researcher at the Department of Biochemistry. «This is new data allowing us to explain the process of fission.»

The researchers were also able to measure the time it took to fission the membrane. Its duration depends on the mechanical properties of the membrane, which vary from one cell to another.

«We found that the ability of dynamin to break an ultra-resistant membrane is due to its torque, that is to say, its rotational force, which is vastly superior to that of other proteins,» explains Professor Roux. «By decrypting the effect of dynamin on the membrane, we have come to understand the workings of membrane fission, a phenomenon which is certainly natural but remains extremely complex.»
-end-


Université de Genève

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.