Precise quantum cloning: Possible pathway to secure communication

October 26, 2016

Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.

The new cloning method uses high performance optical amplifiers to clone light encoded with quantum information -- it is possible this technique could allow quantum encryption to be implemented with existing fibre optic infrastructure.

"One obstacle to sending quantum information is that the quantum state degrades before reaching its destination. Our cloner has many possible applications, and could help overcome this problem to achieve secure long distance communication," said Prof Lam.

The laws of physics -- in particular the 'No Cloning Theorem' -- prevent high quality clones being produced with a 100 percent success rate. The team, led by Prof Lam, uses a probabilistic method to demonstrate that it's possible to produce clones that exceed theoretical quality limits. The method was initially proposed by CQC2T researchers led by Prof Timothy Ralph at UQ.

"Imagine Olympic archers being able to choose the shots that land closest to the target's centre to increase their average score," said Prof Ralph.

"By designing our experiment to have probabilistic outputs, we sometimes 'get lucky' and recover more information than is possible using existing deterministic cloning methods. We use the results closest to a 'bullseye' and discard the rest," he said.

A distinct difference between archery and quantum information information is that the probabilistic method is permitted, and is useful in many crypto-communication situations, such as generating secret keys.

"Our probabilistic cloning method generates higher quality quantum clones than have ever been made before, with a success rate of about 5 percent. We can now create up to five clones of a single quantum state," said lead author Jing Yan Haw, ANU PhD researcher.

"We first encode information onto a light beam. Because this information is in a fragile quantum state, it is difficult to observe or measure," said Haw.

"At the heart of the demonstration is a 'noiseless optical amplifier'. When the amplification is good enough, we can then split a light beam into clones. 'Amplify-then-split' allows us to clone the light beam with minimal distortion, so that it can still be read with exquisite precision," said Prof Ralph.

Quantum cloning opens up important experimental possibilities as well as having applications in ultra-secure long distance quantum networks.

"One of the problems with quantum encryption is its limited communication range. We hope this technology could be used to extend the range of communication, and one day lead to impenetrable privacy between two communicating parties," said Prof Lam.

This latest achievement follows the success of fellow CQC2T researchers at ANU, who last month were the first to demonstrate self-stabilising stationary light.

The quantum cloning results are published in Nature Communications.

Watch a video interview with the researchers about their light cloning technique.
-end-


Centre for Quantum Computation & Communication Technology

Related Quantum Information Articles from Brightsurf:

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies.

Researchers discover a uniquely quantum effect in erasing information
Researchers from Trinity College Dublin have discovered a uniquely quantum effect in erasing information that may have significant implications for the design of quantum computing chips.

Avoiding environmental losses in quantum information systems
New research published in EPJ D has revealed how robust initial states can be prepared in quantum information systems, minimising any unwanted transitions which lead to losses in quantum information.

New technology lets quantum bits hold information for 10,000 times longer than previous record
Quantum bits, or qubits, can hold quantum information much longer now thanks to efforts by an international research team.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Streamlining quantum information transmission
The Internet has deeply changed our ways of living but at the same time introduced serious security and privacy issues.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

AI enables efficiencies in quantum information processing
A new machine learning framework could pave the way for small, mobile quantum networks.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Future information technologies: 3D quantum spin liquid revealed
Quantum Spin Liquids are candidates for potential use in future information technologies.

Read More: Quantum Information News and Quantum Information Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.