James Webb Space Telescope's laser-focused sight

October 26, 2017

About 1 million miles away from the nearest eye surgeon, NASA's James Webb Space Telescope will be able to perfect its own vision while in orbit.

Though the Webb telescope will focus on stars and galaxies approximately 13.5 billion light-years away, its sight goes through a similar process as you would if you underwent laser vision correction surgery to be able to focus on an object 10 feet across the room. In orbit at Earth's second Lagrange point (L2), far from the help of a terrestrial doctor, Webb will use its near-infrared camera (NIRCam) instrument to help align its primary mirror segments about 40 days after launch, once they have unfolded from their unaligned stowed position and cooled to their operating temperatures.

Laser vision correction surgery reshapes the cornea of the eye to remove imperfections that cause vision problems like nearsightedness. The cornea is the surface of the eye; it helps focus rays of light on the retina at the back of the eye, and though it appears to be uniform and smooth, it can be misshapen and pockmarked with dents, dimples, and other imperfections that can affect a person's sight. The relative positioning of Webb's primary mirror segments after launch will be the equivalent of these corneal imperfections, and engineers on Earth will need to make corrections to the mirrors' positions to bring them into alignment, ensuring they will produce sharp, focused images.

These corrections are made through a process called wavefront sensing and control, which aligns the mirrors to within tens of nanometers. During this process, a wavefront sensor (NIRCam in this case) measures any imperfections in the alignment of the mirror segments that prevent them from acting like a single, 6.5-meter (21.3-foot) mirror. An eye surgeon performing wavefront-guided laser vision correction surgery (a process that was improved by technology developed to shape Webb's mirrors) similarly measures and three-dimensionally maps any inconsistencies in the cornea. The system feeds this data to a laser, the surgeon customizes the procedure for the individual, and the laser then reshapes and resurfaces the cornea according to that procedure.

Engineers on Earth will not use a laser to melt and reshape Webb's mirrors (feel free to give a sigh of relief); instead, they will use NIRCam to take images to determine how much they need to adjust each of the telescope's 18 primary mirror segments. They can adjust the mirror segments through extremely minute movements of each segment's seven actuators (tiny mechanical motors) -- in steps of about 1/10,000th the diameter of a human hair.

The wavefront sensing and control process is broken into two parts -- coarse phasing and fine phasing.

During coarse phasing, engineers point the telescope toward a bright star and use NIRCam to find any large offsets between the mirror segments (though "large" is relative, and in this case it means mere millimeters). NIRCam has a special filter wheel that can select, or filter, specific optical elements that are used during the coarse phasing process. While Webb looks at the bright star, grisms in the filter wheel will spread the white light of the star out on a detector. Grisms, also called grating prisms, are used to separate light of different wavelengths. To an observer, these different wavelengths appear as parallel line segments on a detector.

"The light from each segment will interfere with adjacent segments, and if the segments are not aligned to better than a wavelength of light, that interference shows up like barber pole patterns," explained Lee Feinberg, optical telescope element manager for the Webb telescope at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The analysis of the barber pole patterns tell the engineers how to move the mirrors."

During fine phasing, engineers will again focus the telescope on a bright star. This time, they will use NIRCam to take 18 out-of-focus images of that star -- one from each mirror segment. The engineers then use computer algorithms to determine the overall shape of the primary mirror from those individual images, and to determine how they must move the mirrors to align them. These algorithms were previously tested and verified on a 1/6th scale model of Webb's optics, and the real telescope experienced this process inside the cryogenic, airless environment of Chamber A at NASA's Johnson Space Center in Houston. Engineers will go through multiple fine-phasing sessions until those 18 separate, out-of-focus images become a single, clear image.

After the engineers align the primary mirror segments, they must align the secondary mirror to the primary, then align both the primary and secondary mirrors to the tertiary mirror and the science instruments. Though the engineers complete the initial alignment with NIRCam, Feinberg explained they also test the alignment with Webb's other instruments to ensure the telescope is aligned "over the full field."

The entire alignment process is expected to take several months, and once Webb begins making observations, its mirrors will need to be checked every few days to ensure they are still aligned -- just as someone who underwent laser vision correction surgery will schedule regular eye doctor visits to make sure their vision is not degrading.

The James Webb Space Telescope, the scientific complement to NASA's Hubble Space Telescope, will be the premier space observatory of the next decade. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
-end-
For more information about the Webb telescope visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

NASA/Goddard Space Flight Center

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.