Nav: Home

New way to treat cholesterol may be on the horizon

October 26, 2017

HOUSTON - (Oct. 26, 2017) - A breakthrough discovery by scientists at Houston Methodist could change the way we treat cholesterol. Researchers found new evidence that challenges a 40-year notion of how fast we eliminate it from our bodies.

This accidental discovery, made by medical biochemist Henry Pownall, Ph.D., and his team at the Houston Methodist Research Institute, reveals a new pathway in the cholesterol-elimination chain that will be key to developing new drugs to lower cholesterol. Their findings are described in an article titled "ABCA1-Derived Nascent High Density Lipoprotein-Apo AI and Lipids Metabolically Segregate," appearing online Oct. 26 and in print Nov. 21 in the American Heart Association's Arteriosclerosis, Thrombosis, and Vascular Biology journal.

VIDEO: Dr. Pownall explains the research https://vimeo.com/239663429

Pownall, who is the corresponding author, said the initial purpose of their study was to prove the current model of cholesterol transport through the body was correct. It turns out, however, that the model was not quite right.

"The model people have been using for 40 years presumed that cholesterol was transported from the arteries with other lipids and proteins and entered a particle that stayed in the blood for several days before being cleared by the liver for disposal," Pownall said. "What we discovered in the process was something different. We discovered the cholesterol skips all these steps and goes directly from this early particle to the liver in two minutes. This is a thousand times faster than what was formerly suspected."

While most studies look at HDL cholesterol in its mature form found in blood, Pownall and his colleagues studied cholesterol in nascent HDL, an early form of HDL produced by cells. Cholesterol in the nascent HDL goes directly to the liver, largely skipping conversion to the mature form of HDL

Pownall stresses that it's not that current practices of treating "bad" LDL cholesterol are incorrect, but instead that physicians and researchers need to better understand how the "good" HDL cholesterol contributes to cardiovascular disease and how to raise it in a way that protects the heart, because some patients with very high HDL numbers, which were always thought to be beneficial, are actually at risk.

"LDL cholesterol, the so-called 'bad cholesterol' is well controlled with the current statin therapies. The track record for these cholesterol-lowering drugs is indisputable, and they will continue to work," Pownall said. "HDL, or the 'good cholesterol,' however, is a much trickier system. Not everything that raises it protects the heart and not everything that lowers it is bad for you. We will need to redesign new drugs to lower plasma cholesterol in a way that takes into account this new mechanism. We will look for interventions - maybe dietary, maybe pharmacological - that raise HDL cholesterol in a way that helps protect the arteries and prevent cardiovascular disease."
-end-
Researchers collaborating with Pownall on this paper were Bingqing Xu, Baiba K. Gillard, Antonio M. Gotto Jr., and Corina Rosales, and the work was supported by a High-density Lipoprotein (HDL) Biogenesis and Speciation grant from the National Institutes of Health's National Lung, Heart and Blood Institute (R01HL129767), Deutsche Forschungsgemeinschaft (Exc114-2) and Fondren Foundation.

To speak with Henry Pownall, Ph.D., contact Lisa Merkl, Houston Methodist, at 281-620-2502 or lmerkl@houstonmethodist.org. For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: ABCA1-Derived Nascent High Density Lipoprotein-Apo AI and Lipids Metabolically Segregate. Arteriosclerosis, Thrombosis, and Vascular Biology DOI: https://doi.org/10.1161/ATVBAHA.117.310290 (Oct. 26, 2017) B. Xu, B.K. Gillard, A.M. Gotto Jr., C. Rosales, H.J. Pownall.

Houston Methodist

Related Cardiovascular Disease Articles:

Dilemma of COVID-19, aging and cardiovascular disease
Whether individuals should continue to take angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in the context of coronavirus disease 2019 (COVID-19) is discussed in this article.
Air pollution linked to dementia and cardiovascular disease
People continuously exposed to air pollution are at increased risk of dementia, especially if they also suffer from cardiovascular diseases, according to a study at Karolinska Institutet in Sweden published in the journal JAMA Neurology.
New insights into the effect of aging on cardiovascular disease
Aging adults are more likely to have - and die from - cardiovascular disease than their younger counterparts.
Premature death from cardiovascular disease
National data were used to examine changes from 2000 to 2015 in premature death (ages 25 to 64) from cardiovascular disease in the United States.
Ultrasound: The potential power for cardiovascular disease therapy
In the current issue of Cardiovascular Innovations and Applications volume 4, issue 2, pp.
Despite the ACA, millions of Americans with cardiovascular disease still can't get care
Cardiovascular disease (CVD) is the leading cause of death for Americans, yet millions with CVD or cardiovascular risk factors (CVRF) still can't access the care they need, even years after the implementation of the Affordable Care Act (ACA).
Excess weight and body fat cause cardiovascular disease
In the first Mendelian randomization study to look at this, researchers have found evidence that excess weight and body fat cause a range of heart and blood vessel diseases (rather than just being associated with it).
Enzyme may indicate predisposition to cardiovascular disease
Study suggests that people with low levels of PDIA1 in blood plasma may be at high risk of thrombosis; this group also investigated PDIA1's specific interactions in cancer.
Cardiovascular disease in China
This study analyzed data from the Global Burden of Disease Study to look at the rate of cardiovascular disease (CVD) in China along with death and disability from CVD from 1990 to 2016.
Obstructive sleep apnea and cardiovascular disease in women
Obstructive Sleep Apnea and Cardiovascular Disease in Women In the current issue of Cardiovascular Innovations and Applications (Special Issue on Women's Cardiovascular Health, Volume 3, Number 4, 2019, Guest Editor Gladys P.
More Cardiovascular Disease News and Cardiovascular Disease Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.