Nav: Home

Baby's tears and mom's libido

October 26, 2018

A substance in young mice's tears makes female mice more likely to reject male sexual advances. This research is part of ongoing efforts at the University of Tokyo to understand how animals communicate using chemicals called pheromones.

Direct connections between human and mouse behavior cannot be made because pheromones are highly species specific.

"If humans can detect anything in tears, we won't use the same pheromone signal or receptor as mice. But we are investigating if species share the basic neurocircuitry of how the brain processes an olfactory signal to affect behavior," said Professor Kazushige Touhara, leader of the research project.

Pheromone population control

Researchers hope to use the tear pheromone as a natural mouse birth control to reduce mouse populations in the future.

"It is unlikely that other animals would be affected because pheromones are so species specific. The sex-rejecting behavior is an innate instinct, so it's also unlikely that the mice will learn to change their behavior or ignore the artificial pheromone," said Touhara.

Only juvenile mice aged one to three weeks produce the pheromone, called exocrine gland-secreting peptide 22 (ESP22). ESP22 is not airborne and lacks a noticeable odor, but the pheromone spreads around the territory as mothers and young mice wipe tears while grooming.

Both mothers and virgin female mice reject male sexual advances after exposure to ESP22. Less female interest in sex would theoretically benefit juvenile mice by reducing the number of younger siblings competing for resources.

"ESP22 is difficult to artificially synthesize, so we want to find a smaller portion of the pheromone molecule that could be added to mouse drinking water. This could prevent mice breeding in areas where they are pests," said Touhara.

Specific receptors

ESP1 is an adult male pheromone that Touhara's research group has previously studied for its role in enhancing female acceptance of sex. In this new study, researchers tracked how ESP22 and ESP1 are received and processed by the adult female mouse brain.

Pheromone signals from young mice overrode the signals from adult males. Virgin female mice rejected male advances when they were exposed to the sex-rejecting ESP22 even after being exposed to the sex-accepting ESP1.

Both sex-rejecting ESP22 and sex-accepting ESP1 pheromones are recognized by single, dedicated receptors in the nose. Specific neurons send the different pheromone signals to the brain. The presence of similar but specific ESP1 and ESP22 receptors helps reveal how animals evolved the ability to detect and interpret pheromone signals.

"The discovery of only one receptor for each pheromone shows us that single molecules can drastically affect animal behavior," said Touhara.

Pheromones in the brain

Pheromone signals are routed to the medial amygdala, a small group of neurons in the brain.

"The medial amygdala is like a hub to receive and reroute pheromone signals," said Kentaro Ishii, a co-first author of the research paper and fifth-year doctoral student working with Touhara.

ESP22 and ESP1 signals travel separately but in parallel until reaching the medial amygdala. After that point, the pheromones affect different neurocircuitry in the brain to create different behaviors. Ongoing research in the laboratory will explore pheromone-related neurocircuitry beyond the medial amygdala hub.

"The medial amygdala is still very mysterious, so we are excited to discover more details about how pheromone signals are sorted and routed after they are received there," said Ishii.

"Additionally, we want to understand the complexity of how the brain computes and sorts olfactory signals in a natural environment, where animals are simultaneously exposed to many different pheromones and other chemical signals all the time," said Ishii.
-end-
The paper is published by Nature Communications. Collaborators at RIKEN Center for Brain Science in Japan and Harvard Medical School in the U.S. also contributed to the research.

Journal Article

Takuya Osakada, Kentaro K. Ishii, Hiromi Mori, Ryo Eguchi, David M. Ferrero, Yoshihiro Yoshihara, Stephen D. Liberles, Kazunari Miyamichi, and Kazushige Touhara. 2018. Sexual rejection via a vomeronasal receptor-triggered limbic circuit. Nature Communications. DOI: 10.1038/s41467-018-07003-5.

Related Links

Graduate School of Agricultural and Life Sciences, The University of Tokyo website: http://www.a.u-tokyo.ac.jp/english/index.html

Kazushige Touhara website: http://park.itc.u-tokyo.ac.jp/biological-chemistry/profile_english/index.html

Research Contact

Professor Kazushige Touhara
Laboratory of Biological Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657
Tel: +81-(0)3-5841-5109
E-mail: ktouhara@mail.ecc.u-tokyo.ac.jp

Press Contacts

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.