Nav: Home

SibFU scientists simulated the intracellular environment of a luminescent bacteria cell

October 26, 2018

A team from the Institute of Fundamental Biology and Biotechnology of SFU used glycerol and sucrose to simulate the intracellular environment of luminescent bacteria and carried out a number of enzymatic reactions in it. The work will help develop fragments of metabolic chains with different lengths and study fermentative reactions in the conditions close to intracellular. The article of the scientists was published in the Molecular Catalysis journal.

Hundreds of reactions involving enzymes constantly take place in real cells. To study them in more detail, scientists from all over the world try to create comprehensive experimental models of the intracellular environment. One interesting feature of such artificial environment-models is the possibility to adjust their parameters to understand how a certain enzymatic reaction would react to that and how different the nature of enzyme reactions is in a real cell and in tube conditions.

In order to understand how the viscosity of the reaction mixture affects the rate of enzymatic processes, a team from the Institute of Fundamental Biology and Biotechnology of SFU simulated the intracellular environment using two organic solvents - glycerol and sucrose. To test the effect of viscosity of reaction mixture, the scientists placed a fragment of a bioluminescent metabolic chain into such environment (bioluminescence is the ability of living organisms to emit light, observed, for example, in fireflies or marine bacteria).

The work of the scientists consisted of three stages. On the first stage the biophysicists developed several artificial model systems made of glycerol and sucrose with different concentrations of components but the same viscosity levels of reaction medium. On the second stage they found out how the viscosity of the reaction mixture affected the speed of a enzymatic reaction in the coupled system of three enzymes: LDH, NAD(P)H:FMN-oxidoreductase, and luciferase. On the third stage the researchers evaluated the thermal stability of the triple-enzyme system at the range of temperatures from 15 to 80°?.

As a result of the study the scientists concluded that sucrose limited the mobility of the enzymes more efficiently than glycerol. Mobility limitation may lead to changes in the reaction rate or even mechanism. Moreover, the study showed that the increasing of thermal stability of enzymes in the presence of viscous reaction mixture environments while increasing temperature should be speculated more detailed by other researchers. Another result of the study was that the approach of constructing the cellular multi-enzyme metabolic chains inside the luminous bacteria cell was proposed.

"Due to the huge number of enzymes reactions inside a real cell, for the process of metabolism to go on quickly and continuously within it, enzymes should have high cooperativity (i.e. be able to bind with different substances (substrates) depending on their location). Therefore, the more changing of the thermal stability of enzymes in the presence of viscogens, the better the cooperation of studied enzyme systems inside the real-cell conditions, and the greater the possibility that an artificial fragment of a metabolic chain would be natural for a bacterial cell. It is extremely important to study the influence of viscous organic solvents on the rate and thermal stability of enzymatic reactions. The uniqueness of our study is that we use natural compounds - glycerol and sucrose that are actually found in the real cell, in contrast to crowding agents that are used in similar studies by other researchers," says Oleg Sutormin, a co-author of the study, and junior research associate of the Laboratory of Bioluminescent Biotechnologies of SFU.

Siberian Federal University

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universit├Ąt Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
Everyday enzymes, now grown in plants
Whether we know it or not, enzymes play a role in a range of everyday products, from orange juice to denim jeans.
Balance of two enzymes linked to pancreatic cancer survival
UC San Diego School of Medicine research sets the stage for clinicians to potentially one day use levels of a pancreatic cancer patient's PHLPP1 and PKC enzymes as a prognostic, and for researchers to develop new therapeutic drugs that inhibit PHLPP1 and boost PKC as a means to treat the disease.
Biologists have studied enzymes that help wheat to fight fungi
Scientists from I.M. Sechenov First Moscow State Medical University together with their Russian colleagues studied reaction of wheat plants to damage caused by pathogenic fungi.
Scientists developed enzymes with remote control
Scientists developed a method to enhance the activity of enzymes by using radio frequency radiation.
Enzymes in the cross-hairs
More and more bacteria are resistant to available antibiotics. A team of chemists from the Technical University of Munich now presents a new approach: they have identified important enzymes in the metabolism of staphylococci.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.