Hydrogen sulfide helps maintain your drive to breathe

October 26, 2020

Tsukuba, Japan - Effective regulation of breathing pattern is essential for many different mammalian processes such as energy production, metabolic regulation and even speech. Researchers have recently discovered that the body's production of hydrogen sulfide is important to generate a normal breathing pattern, potentially leading to new treatments for people suffering from breathing disorders such as central sleep apnea.

This result may seem surprising at first given that exposure to high levels of hydrogen sulfide can be toxic to mammalian health. However, hydrogen sulfide is produced in small quantities in the body by an enzyme called cystathionine β-synthase (CBS) and is believed to act as a bioactive gas to regulate different body functions. CBS is located in both the brain and in peripheral systems including arteries, veins and kidneys.

In a study published this month in Communications Biology, researchers from the University of Tsukuba further investigated the role of hydrogen sulfide as a bioactive gas in the body. First they looked at the effect of inhibiting the activity of the CBS enzyme in rats, thereby inhibiting the production of hydrogen sulfide. They found that this resulted in a change in the breathing patterns of the rats from a normal pattern to a gasping pattern. From this, the researchers concluded that the production of hydrogen sulfide allows the regions of the brain that are responsible for controlling breathing patterns to function normally.

Breathing normally requires cells located throughout the body to sense internal levels of oxygen and carbon dioxide and communicate this information to specific brain regions that control breathing rate and pattern. To determine how the different areas of the body are affected by hydrogen sulfide, researchers used different compounds to selectively block the production of hydrogen sulfide in the brain or in peripheral cells.

"Hydrogen sulfide produced by CBS enables neurons located in the brain regions that regulate breathing to communicate," explains Professor Tadachika Koganezawa, the senior researcher on the study. "Without hydrogen sulfide, the centers of the brain responsible for controlling breathing were not able to maintain the neural network to generate normal breathing pattern." The researchers found that these effects were specific to the brain, as inhibition of hydrogen sulfide in peripheral cells had no effect.

By unraveling the effect of hydrogen sulfide in the brain centers that control breathing, researchers can now begin to explore the potential role of hydrogen sulfide in disorders that affect breathing such as central sleep apnea or hyperventilation.
-end-
The article, "Endogenous hydrogen sulfide maintains eupnea in an in situ arterially perfused preparation of rats," was published in Communications Biology at https://doi.org/10.1038/s42003-020-01312-6.

University of Tsukuba

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.