How to figure out what you don't know

October 26, 2020

Increasingly, biologists are turning to computational modeling to make sense of complex systems. In neuroscience, researchers are adapting the kinds of algorithms used to forecast the weather or filter spam from your email to seek insight into how the brain's neural networks process information.

New research from Cold Spring Harbor Laboratory Assistant Professor Tatiana Engel offers crucial guidance to biologists using such models. Testing various computational models of the nervous system, she and postdoctoral researcher Mikhail Genkin have found that just because a model can make good predictions about data does not mean it reflects the underlying logic of the biological system it represents. Relying on such models without carefully evaluating their validity could lead to wrong conclusions about how the actual system works, they say.

The work, published October 26, 2020 in Nature Machine Intelligence, concerns a type of machine learning known as flexible modeling, which gives users the freedom to explore a wide range of possibilities without formulating specific hypotheses beforehand. Engel's lab has turned to such models to investigate how signaling in the brain gives rise to decision-making.

When it comes to forecasting the weather or predicting trends in the stock market, any model that makes good predictions is valuable. But Engel says that for biologists, the goals are different:

"Because we are interested in scientific interpretation and actually discover hypotheses from the data, we not only need to fit the model to the data, but we need to analyze or understand the model which we get, right? So we want to look, as I said, we want to look into model structure and the model mechanism to make inference that this is maybe how the brain works."

It's possible to make good predictions using wrong assumptions, Engel said, pointing to the ancient model of the solar system that accurately predicted the movements of celestial bodies while positing that those bodies revolved around the Earth, not the Sun. So it was important to consider how well particular models of neural networks could be trusted.

By building and comparing several models of neural signaling, Engel and Genkin found that good predictive power does not necessarily indicate that a model is a good representation of real neural networks. They found that the best models were instead those that were most consistent across multiple datasets. This approach won't necessarily work for all situations, however, and biologists may need alternative methods of evaluating their models. Most importantly, Genkin said, "We shouldn't take anything for granted. We should check every assumption we have."
-end-


Cold Spring Harbor Laboratory

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.