GUMC researchers hone in on new strategy to treat common infection

October 27, 2008

Washington, DC -- Researchers at Georgetown University Medical Center (GUMC) have successfully tested a genetic strategy designed to improve treatment of human infections caused by the yeast Candida albicans, ranging from diaper rash, vaginitis, oral infections (or thrush which is common in HIV/AIDS patients), as well as invasive, blood-borne and life-threatening diseases.

Their findings confirm that inhibiting a key protein could provide a new drug target against the yeast, which inhabits the mucous membranes of most humans. The research was presented today at the 48th Annual Interscience Conference on Antimicrobial Agents and Chemotherapy/46th Annual Meeting of the Infectious Diseases Society of America (ICAAC/IDSA) in Washington, DC.

"This is a genetically intelligent approach to target identification and drug design," says the study's lead author, Richard Calderone, PhD, professor and chair of the department of microbiology and immunology and co-director of the PhD program in the global infectious disease program at GUMC.

"Candida infections are often treatable, however, in patients that are immunocompromised following cancer chemotherapy, bone marrow transplantation, or surgery, diagnosis is often delayed, postponing therapy," he says. "Also when drug-resistant yeast pathogens cause the infection, clinical management of the patient becomes a problem."

Candida invasive, blood-borne infections are the fourth most common hospital-acquired infection in the United States, costing the healthcare system about $1.8 billion each year, Calderone says.

"More drug resistance is being seen clinically, so there is significant room for improvement in the therapies used today," he says

This study continues research in which Calderone and his colleagues identified a protein, the product of the Ssk1 gene that Candida needs to infect its host. To date, this protein has not been found in humans or in animals, which means it could be "targeted" with a novel drug without producing toxicity because such an agent should only attack the fungus.

The researchers found that if the Ssk1 gene is deleted from Candida albicans, the "triazole" drugs that are now used to treat these diseases are much more effective in the laboratory. "This allows the triazole drugs to do their job," Calderone says. "We propose that this finding might lead to other, possibly more effective, treatment options."

In this study, the researchers used a gene microarray analysis to further understand what knocking out the Ssk1 gene does to the organism, and they discovered that the gene is critical to the pathogenic nature of the fungi.

What this means is that an Ssk1 inhibitor might work in synergy with a triazole or perhaps as an effective stand-alone drug to treat Candida infections, the researchers say. If it works in Candida, it may have broader activity in other pathogens because Ssk1p is found in other fungi.

"Using the genome of the organism to find genes to target is a logical approach to drug design," he says. The researchers are now working with other groups to find the right agent to target the Ssk1protein.
-end-
Neeraj Chauhan, PhD, assistant research professor in the department of microbiology and immunology at GUMC, is co-author on the study. The authors report no disclosures. This research was funded by the National Institutes of Allergy & Infectious Diseases of the NIH.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, the world-renowned Lombardi Comprehensive Cancer Center and the Biomedical Graduate Research Organization (BGRO), home to 60 percent of the university's sponsored research funding.

Georgetown University Medical Center

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.