New understanding of how we remember traumatic events

October 27, 2008

Neuroscientists at The University of Queensland have discovered a new way to explain how emotional events can sometimes lead to disturbing long term memories.

In evolutionary terms, the brain's ability to remember a fear or trauma response has been crucial to our long term survival.

However, in the modern world, when a similar type of fear response is triggered by a traumatic event such as being in combat; being exposed to abuse or being involved a major car accident, we do not want to repeatedly re-experience the episode, in vivid detail, for the rest of our lives.

During studies of the almond-shaped part of the brain called the amygdala - a region associated with processing emotions - Queensland Brain Institute (QBI) scientists have uncovered a cellular mechanism underlying the formation of emotional memories, which occurs in the presence of a well known stress hormone.

In a scientific paper published in the Journal of Neuroscience, QBI's Dr Louise Faber and her colleagues have demonstrated how noradrenaline, the brain's equivalent of adrenaline, affects the amygdala by controlling chemical and electrical pathways in the brain responsible for memory formation.

"This is a new way of understanding how neurons form long term memories in the amygdala," Dr Faber said.

"Our strongest and most vivid human memories are usually associated with strong emotional events such as those associated with extreme fear, love and rage."

"For many of us, our deepest memories are mental snapshots taken during times of high emotional impact or involvement," she said.

"Some aspects of memory formation are incredibly robust - and the mechanism we've discovered opens another door in terms of understanding how these memories are formed."

Dr Faber said her team's discovery could help other scientists to elucidate new targets, leading to better treatments for conditions such as anxiety disorders and post-traumatic stress disorder.
-end-
Established with the generous support of the Atlantic Philanthropies in 2003 as part of the Queensland Government's Smart State Initiative, QBI is dedicated to understanding the molecular basis of brain function and applying this knowledge to the development of new therapeutics to treat brain and mental health disorders.

Research Australia

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.