Nav: Home

Bacteria cause old buildings to feel off-color

October 27, 2008

The assumption that time, weather, and pollution are what cause buildings to decline is only partly true. Bacteria are also responsible for the ageing of buildings and monuments - a process known as biodeterioration, where organisms change the properties of materials through their vital activities. Leonila Laiz from the Institute for Natural Resources and Agrobiology in Seville, Spain, and colleagues have just isolated five new strains of bacteria that degrade old buildings. Their work1 is published online this week in Springer's journal Naturwissenschaften.

Over the last decade, both microbiologists and conservators have been studying the microbial colonization and biodeterioration of both mural paintings in ancient monuments and plaster walls in churches. A specific family of bacteria, Rubrobacter, is commonly found in aged monuments and is thought to be responsible for their rosy discoloration. Until now, only three Rubrobacter species have been identified, and they all thrive in high temperatures of 45 to 80 degrees Celsius (thermophilic bacteria).

Laiz and her team studied three indoor sites showing overt biodeterioration: the Servilia and Postumio tombs in the Roman Necropolis of Carmona in Spain and the Vilar de Frades church in Portugal. Their microbiological and molecular analyses identified five new Rubrobacter strains. The strains are partly involved in the process of efflorescence formation, where salt residues form on buildings, due to the loss of water after exposure to air for a prolonged period of time. Efflorescences lead to damage in the porous structure of the rocks and the gradual deterioration of these buildings.

Two of the newly isolated strains were then grown onto rocks to replicate the biodeterioration process in the laboratory. The Rubrobacter cells penetrated the mineral matrix and crystals formed in contact with the bacterial film. When the film separated from the rock surface after exposure to heat, it removed mineral grains, producing a mechanical deterioration. These three processes are characteristic of biodeterioration and confirm that the isolated bacteria are actively involved in the ageing of the studied buildings.

This study of new Rubrobacter that thrive at lower temperatures (non-thermophilic bacteria) gives another insight into the physiology and activity of these bacteria present in monuments.
-end-
Reference
1. Laiz L et al (2008). Isolation of five Rubrobacter strains from biodeteriorated monuments. Naturwissenschaften DOI 10.1007/s00114-008-0452-2

The full-text article is available to journalists as a pdf.

Springer

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab