Nav: Home

Scientists unveil mechanism for 'up and down' in plants

October 27, 2008

Versatile hormone

It is known for a long time that the plant hormone auxin is transmitted from the top to the bottom of a plant, and that the local concentration of auxin is important for the growth direction of stems, the growth of roots, the sprouting of shoots. To name a few things; auxin is also relevant to, for instance, the ripening of fruit, the clinging of climbers and a series of other processes. Thousands of researchers try to understand the different roles of auxin.

In many instances the distribution of auxin in the plant plays a key role, and thus the transport from cell to cell. At the bottom of plant cells, so-called PIN proteins are located on the cell membrane, helping auxin to flow through to the lower cell. However, no one thoroughly understood why the PIN proteins only showed up at the bottom of a cell.

Endocytosis

An international group of scientists from labs in five countries, headed by Jirí Friml of the VIB-department Plant Systems Biology at Ghent University, revealed a rather unusual mechanism. PIN proteins are made in the protein factories of the cell and are transported all over the cell membrane. Subsequently they are engulfed by the cell membrane, a process called endocytosis. The invagination closes to a vesicle, disconnects and moves back into the cell. Thus the PIN proteins are recycled and subsequently transported to the bottom of the cell, where they are again incorporated in the cell membrane. It is unclear why plants use such a complex mechanism, but a plausible explanation is this mechanism enables a quick reaction when plant cells feel a change of direction of gravity, giving them a new 'underside'.

Gene technology

To see the path of the protein, the researchers used gene technology to make cells in which the PIN protein was linked to fluorescent proteins. (This technology was rewarded with the Nobel Prize 2008 for chemistry.) Subsequently they produced cells in which the endocytosis was disrupted in two different ways. The PIN proteins showed up all over the cell membrane. When the researchers proceeded from single cells to plant embryos, the embryos developed deformations, because the pattern of auxin concentrations in the embryo was distorted. When these plants with disrupted endocytosis grew further, roots developed where the first leaflet should have been.
-end-


VIB (the Flanders Institute for Biotechnology)

Related Protein Articles:

Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
Put down the protein shake: Variety of protein better for health
University of Sydney researchers have examined whether there are any ongoing ramifications or potential side-effects from long-term high protein intake or from consuming certain types of amino acids.
Elucidating protein-protein interactions & designing small molecule inhibitors
To carry out wide range of cellular functionalities, proteins often associate with one or more proteins in a phenomenon known as Protein-Protein Interaction (PPI).
The protein with the starting gun
Whether dormant bacteria begin to reproduce is no accident. Rather, they are simply waiting for a clear signal from a single protein in the cell interior.
Protein moonlighting
A class of proteins involved in essential cell functions has an unexpected role, UCSB scientists discover.
More Protein News and Protein Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab