Progress toward new storage media

October 27, 2008

In this information age, increased storage capacity is a central challenge for science and technology. A team of German and Italian researchers has pursued this by exploring the concept of "nanostructured storage domains". As the scientists, led by Massimiliano Cavallini at the National Research Council (CNR) in Bologna (Italy) and Mario Ruben at the Forschungszentrum Karlsruhe (Germany), report in the journal Angewandte Chemie, they have been able to produce reliable nanopatterns of a spin-transition compound on silicon oxide chips. This is a decisive step toward a new generation of molecular storage media in which binary data are stored by the "switching" of electron spins.

Currently, computer hard drives store data by magnetizing the surface of a rotating disk. Each "storage cell" has an "address", so that stored data can be accessed directly. To increase storage capacity, the individual magnetic domains are made smaller and smaller; we are however getting close to the limit. Thermal excitation occasionally causes some of the magnetic particles to flip in the other direction. When the domains are very small, the entire cell can rapidly lose its magnetization.

To achieve higher information density, we could change to other switchable material properties, such as the transition between two spin states. For example, iron(II) compounds can exist in either a high- or a low-spin state. "Switching" (flipping) can be controlled by changes in temperature, pressure, or electromagnetic radiation.

In addition to two distinguishable states to represent 0 and 1, data storage also requires a unique "address" for each storage location that can be identified by the optical writing and reading units of the computer. This requires an interface that makes the nanoscopic spin-state transitions of the molecular switching units compatible with the microscale instrument environment. This is possible if the spin-transition compound can be put into a highly ordered micro- or nanostructure.

By using special unconventional micro- and nanolithographic techniques, the team was able to "print" a neutral iron(II) complex onto a silicon wafer in the form of very fine lines. In this process, the nanocrystals organize themselves into a preferred orientation along the line. Furthermore, the researchers were able to transfer the pattern of a recorded CD onto a film of this iron compound. This is the first proof that it is possible to produce readable logic patterns with a spin-transfer compound.

To make the stripe structures technologically useful, the switching process must be adapted to room-temperature conditions; work on this front is already at an advanced stage.
Author: Massimiliano Cavallini, CNR, Institute for Nanostructured Materials, Bologna (Italy),
Title: Micro- and Nanopatterning of Spin-Transition Compounds into Logical Structures Angewandte Chemie International Edition 2008, 47, No. 45, 8596?, doi: 10.1002/anie.200802085


Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to