Researchers use new approach to overcome key hurdle for next-generation superconductors

October 27, 2011

Researchers from North Carolina State University have developed a new computational approach to improve the utility of superconductive materials for specific design applications - and have used the approach to solve a key research obstacle for the next-generation superconductor material yttrium barium copper oxide (YBCO).

A superconductor is a material that can carry electricity without any loss - none of the energy is dissipated as heat, for example. Superconductive materials are currently used in medical MRI technology, and are expected to play a prominent role in emerging power technologies, such as energy storage or high-efficiency wind turbines.

One problem facing systems engineers who want to design technologies that use superconductive materials is that they are required to design products based on the properties of existing materials. But NC State researchers are proposing an approach that would allow product designers to interact directly with the industry that creates superconductive materials - such as wires - to create superconductors that more precisely match the needs of the finished product.

"We are introducing the idea that wire manufacturers work with systems engineers earlier in the process, utilizing computer models to create better materials more quickly," says Dr. Justin Schwartz, lead author of a paper on the process and Kobe Steel Distinguished Professor and head of NC State's Department of Materials Science and Engineering. "This approach moves us closer to the ideal of having materials engineering become part of the product design process."

To demonstrate the utility of the process, researchers tackled a problem facing next-generation YBCO superconductors. YBCO conductors are promising because they are very strong and have a high superconducting current density - meaning they can handle a large amount of electricity. But there are obstacles to their widespread use.

One of these key obstacles is how to handle "quench." Quench is when a superconductor suddenly loses its superconductivity. Superconductors are used to store large amounts of electricity in a magnetic field - but a quench unleashes all of that stored energy. If the energy isn't managed properly, it will destroy the system - which can be extremely expensive. "Basically, the better a material is as a superconductor, the more electricity it can handle, so it has a higher energy density, and that makes quench protection more important, because the material may release more energy when quenched," Schwartz says.

To address the problem, researchers explored seven different variables to determine how best to design YBCO conductors in order to optimize performance and minimize quench risk. For example, does increasing the thickness of the YBCO increase or decrease quench risk? As it turns out, it actually decreases quench risk. A number of other variables come into play as well, but the new approach was effective in helping researchers identify meaningful ways of addressing quench risk.

"The insight we've gained into YBCO quench behavior, and our new process for designing better materials, will likely accelerate the use of YBCO in areas ranging from new power applications to medical technologies - or even the next iteration of particle accelerators," Schwartz says.

"This process is of particular interest given the White House's Materials Genome Initiative," Schwartz says. "The focus of that initiative is to expedite the process that translates new discoveries in materials science into commercial products - and I think our process is an important step in that direction."
-end-
The paper, "Three-Dimensional Micrometer-Scale Modeling of Quenching in High-Aspect-Ratio YBCO -- δ Coated Conductor Tapes -- Part II: Influence of Geometric and Material Properties and Implications for Conductor Engineering and Magnet Design," was co-authored by Dr. Wan Kan Chan, a research associate at NC State. The paper is forthcoming from IEEE Transactions on Applied Superconductivity. The research was funded by the Air Force Research Laboratory.

North Carolina State University

Related Superconductors Articles from Brightsurf:

Progress in electronic structure and topology in nickelates superconductors
Recently, superconductivity was discovered in the hole-doped nickelates, wh ich provide us a new platform to study the mechanism of high-temperature superconductivity.

UCF researcher zeroes in on critical point for improving superconductors
Developing a practical ''room temperature'' superconductor is a feat science has yet to achieve.

Connecting two classes of unconventional superconductors
The understanding of unconventional superconductivity is one of the most challenging and fascinating tasks of solid-state physics.

Superconductors are super resilient to magnetic fields
A Professor at the University of Tsukuba provides a new theoretical mechanism that explains the ability of superconductive materials to bounce back from being exposed to a magnetic field.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

A new way towards super-fast motion of vortices in superconductors discovered
An international team of scientists from Austria, Germany and Ukraine has found a new superconducting system in which magnetic flux quanta can move at velocities of 10-15 km/s.

Controlling superconductors with light
IBS scientists has reported a conceptually new method to study the properties of superconductors using optical tools.

Superconductors with 'zeitgeist' -- When materials differentiate between past and future
Physicists at TU Dresden have discovered spontaneous static magnetic fields with broken time-reversal symmetry in a class of iron-based superconductors.

Hydrogen blamed for interfering with nickelate superconductors synthesis
Prof. ZHONG Zhicheng's team at the Ningbo Institute of Materials Technology and Engineering has investigated the electronic structure of the recently discovered nickelate superconductors NdNiO2. They successfully explained the experimental difficulties in synthesizing superconducting nickelates, in cooperation with Prof.

A closer look at superconductors
From sustainable energy to quantum computers: high-temperature superconductors have the potential to revolutionize today's technologies.

Read More: Superconductors News and Superconductors Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.