Radioactive waste: Where to put it?

October 27, 2013

Boulder, CO, USA -- As the U.S. makes new plans for disposing of spent nuclear fuel and other high-level radioactive waste deep underground, geologists are key to identifying safe burial sites and techniques. Scientists at The Geological Society of America (GSA) meeting in Denver will describe the potential of shale formations; challenges of deep borehole disposal; and their progress in building a computer model to help improve understanding of the geologic processes that are important for safe disposal of high-level waste.

In the United States, about 70,000 metric tons of spent commercial nuclear fuel are located at more than 70 sites in 35 states. Shales and other clay-rich (argillaceous) rocks have never been seriously considered for holding America's spent nuclear fuel, but it is different overseas. France, Switzerland, and Belgium are planning to put waste in tunnels mined out of shale formations, and Canada, Japan, and the United Kingdom are evaluating the idea.

At the GSA meeting, U.S. Geological Survey hydrogeology expert C.E. Neuzil of Reston, Virginia, will report that some shales are so impermeable that there is little risk of radioactivity from buried nuclear waste reaching ground or surface water.

"This is usually difficult to demonstrate," Neuzil says, "but some shales have natural groundwater pressure anomalies that can be analyzed -- as if they were permeability tests -- on a very large scale." This capability was shown recently at the Bruce Nuclear Site, explains Neuzil, a proposed low/intermediate waste repository 1,200 feet underground in Ontario, Canada. Argillaceous rocks have additional attractive qualities, Neuzil says: They are common, voluminous, and tend to be tectonically quiet -- meaning no earthquakes to crack the walls of a fuel-rod burial chamber.

Another disposal option for nuclear waste is deep boreholes. The 2012 presidential Blue Ribbon Commission on America's Nuclear Future recommended more research, and the U.S. Department of Energy is now developing an R&D plan. However, the U.S. Nuclear Waste Technical Review Board (NWTRB) has statutory responsibility for evaluating the technical validity of DOE's nuclear waste activities, and is on the record with the position that deep boreholes present many technical challenges and studying them "should not delay higher priority research on a mined geologic repository."

At next week's GSA meeting, Review Board senior staff professional Bret W. Leslie and Stanford University geophysicist Mary Lou Zoback, an NWTRB member, will present the board's assessment of: Whether nuclear waste winds up in tunnels, boreholes or both, the planning will be helped by new analytical tools. One is a new computer model that will evaluate the behavior of various forms of nuclear waste, and waste containers and barriers, if stored in various rocks. The model is being developed under the auspices of the Center for Nuclear Waste Regulatory Analyses (CNWRA), the NRC's federally funded research and development center, and will be described at the GSA meeting by NRC performance analyst Jin-Ping Gwo.
-end-
DETAILS
What: Session 83: Disposal of Radioactive Waste: Promise, Progress, Pitfalls, and Path Forward
https://gsa.confex.com/gsa/2013AM/webprogram/Session32767.html
When: Sun., 27 October 1:00-5:00 PM
Where: Colorado Convention Center Room 303

Media contacts:
C.E. Neuzil, U.S. Geological Survey, (703) 648-5880 or (571) 527-7201 mobile, ceneuzil@usgs.gov
Bret W. Leslie, U.S. Nuclear Waste Technical Review Board, (703) 235-9132 or (703) 785-6935 mobile, leslie@nwtrb.gov
Jin-Ping Gwo, U.S. Nuclear Regulatory Commission, Jin-Ping.Gwo@nrc.gov

ON-SITE NEWSROOM
Contact: Kea Giles
Colorado Convention Center, Room 608
+1-303-228-8431

The Geological Society of America, founded in 1888, is a scientific society with more than 25,000 members from academia, government, and industry in more than 100 countries. Through its meetings, publications, and programs, GSA enhances the professional growth of its members and promotes the geosciences in the service of humankind. Headquartered in Boulder, Colorado, USA, GSA encourages cooperative research among earth, life, planetary, and social scientists, fosters public dialogue on geoscience issues, and supports all levels of earth science education.

http://www.geosociety.org

Geological Society of America

Related Nuclear Waste Articles from Brightsurf:

Reducing radioactive waste in processes to dismantle nuclear facilities
Margarita Herranz, professor of nuclear engineering at the UPV/EHU, leads one of the working groups in the Europe H2020 INSIDER project.

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.

Are salt deposits a solution for nuclear waste disposal?
Researchers testing and modeling to dispose of the current supply of waste.

Taking a bite out of food waste: Scientists repurpose waste bread to feed microbes
Food waste is a serious economic and environmental problem. Researchers have developed a protocol using waste bread as a medium to grow microorganisms for the fermented food industry.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Researchers perfect nanoscience tool for studies of nuclear waste storage
Studying radiation chemistry and electronic structure of materials at scales smaller than nanometres, the University of Guelph team prepared samples of clay in ultra-thin layers.

Deep learning expands study of nuclear waste remediation
A research collaboration between Berkeley Lab, Pacific Northwest National Laboratory, Brown University, and NVIDIA has achieved exaflop performance with a deep learning application used to model subsurface flow in the study of nuclear waste remediation.

Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.

Electrospun sodium titanate speeds up the purification of nuclear waste water
Electrospun sodium titanate speeds up the purification of water based on selective ion exchange -- effectively extracts radio-active strontium.

Read More: Nuclear Waste News and Nuclear Waste Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.