Distressed damsels cry for help

October 27, 2015

Researchers at the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) at James Cook University have found that fish release a chemical 'distress call' when caught by predators, dramatically boosting their chances of survival.

Fish harbour a chemical substance in their skin that's released upon injury. It triggers fearful and escape behaviour in nearby fish, but until now scientists hadn't identified the benefits to the sender.

"For decades scientists have debated the evolutionary origin of chemical alarm cues in fish," says study lead author, Dr. Oona Lönnstedt, now a research fellow at the University of Uppsala.

The researchers have now found the answer, discovering that the chemical cue attracts additional predators to the capture site.

"Chemical alarm cues in fish seem to function in a similar way to the distress calls emitted by many birds and mammals following capture," says study co-author Professor Mark McCormick from the Coral CoE.

"When damselfish release their chemical alarm on a coral reef, lots of additional predators are attracted to the cue release area," says Professor McCormick.

"More predators would seem to mean more trouble, but we discovered that additional predators interfere with the initial predation event, allowing the prey a greater chance to escape."

The research team found the new predators would attempt to steal the prey, and in the ensuing commotion the captured damselfish had a greater chance to break free and hide.

"When caught by a predator, small damselfish have almost no chance of escaping their fate as the predator's next meal. However, when another fish predator is attracted to the capture site, prey will escape about 40 percent of the time," says Professor McCormick.

Dr Lönnstedt says this proves that chemical alarm cues benefit the sender by giving it a much greater chance of not ending up as dinner.

"These findings are the first to demonstrate an evolutionary mechanism by which fish may benefit from the production and release of chemical alarm cues, and highlight the complex and important role chemical cues play in predator-prey interactions on coral reefs." Dr. Lönnstedt says.

"It all goes to show that coral reef fish have evolved quite a range of clever strategies for survival which are deployed when a threatening situation demands."
-end-
Paper: Damsel in distress: captured damselfish prey emit chemical cues that attract secondary predators and improve escape chances by Oona Lönnstedt and Mark McCormick is published in the journal Proceedings of the Royal Society B.

Contacts:

Professor Mark McCormick - mark.mccormick@jcu.edu.au
Dr Oona Lönnstedt - oona.lonnstedt@ebc.uu.se
Eleanor Gregory, Communications Manager - +61 (0) 428 655 994, eleanor.gregory@jcu.edu.au

ARC Centre of Excellence in Coral Reef Studies

Related Coral Reef Articles from Brightsurf:

Was Hong Kong once a coral reef paradise?
Researchers from The University of Hong Kong's School of Biological Sciences and The Swire Institute of Marine Science, have for the first time investigated the historical presence of coral communities in the Greater Bay Area, revealing a catastrophic range collapse and loss of diversity that occurred in the last several decades.

Angels in disguise: Angelfishes hybridize more than any other coral reef species
A new study highlights the remarkably high incidence of and tendency toward hybridisation in the angelfish family (even between divergent species), more so than in any other group of coral reef fishes.

Dimethylsulfoniopropionate concentration in coral reef invertebrates
New research highlights the effect of benthic assemblages on the sulfur metabolism of coral and giant clam species.

Meeting multiple management goals to maximize coral reef health
While management strategies can be effective at achieving reef fisheries' conservation goals, a new study reveals how increased human pressure makes conservation of coral reef biodiversity truly difficult to achieve.

Ocean deoxygenation: A silent driver of coral reef demise?
Authors of a new study published in Nature Climate Change say the threat of ocean deoxygenation has largely been ignored and asks the question: 'Are our coastal coral reefs slowly suffocating?'

Scientists say it is time to save the red sea's coral reef
An international group of researchers led by Karine Kleinhaus, MD, of the Stony Brook University School of Marine and Atmospheric Sciences (SoMAS), calls upon UNESCO to declare the Red Sea's 4000 km of coral reef as a Marine World Heritage Site and recommends additional measures critical for the reef's survival. the study is published in Frontiers in Marine Sciences.

Sounds of the past give new hope for coral reef restoration
Young fish can be drawn to degraded coral reefs by loudspeakers playing the sounds of healthy reefs, according to new research published in Nature Communications.

Healthy mangroves help coral reef fisheries under climate stress
Healthy mangroves can help fight the consequences of climate change on coral reef fisheries, according to a University of Queensland-led study.

Great Barrier Reef island coral decline
A long-term study of coral cover on island groups of the Great Barrier Reef has found declines of between 40 and 50 percent of live, hard corals at inshore island groups during the past few decades.

Longest coral reef survey to date reveals major changes in Australia's Great Barrier Reef
An in-depth look at Australia's Great Barrier Reef over the past 91 years concludes that since 1928 intertidal communities have experienced major phase-shifts as a result of local and global environmental change, leaving few signs that reefs will return to their initial state in the near future.

Read More: Coral Reef News and Coral Reef Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.