Nav: Home

UT Southwestern researchers identify an enzyme as a major culprit of autoimmune diseases

October 27, 2015

DALLAS - Oct. 27, 2015 - Activating an enzyme that sounds an alarm for the body's innate immune system causes two lethal autoimmune diseases in mice, while inhibiting the same enzyme rescues them, UT Southwestern Medical Center researchers report.

The findings, published in the Oct. 20 issue of the Proceedings of the National Academy of Sciences (PNAS), could someday lead to new therapies for autoimmune diseases.

"These results suggest that inhibition of the enzyme cGAS may be an effective therapy for autoimmune diseases such as Aicardi-Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE), which are linked to the same inflammatory pathway," said senior author Dr. Zhijian "James" Chen, Professor of Molecular Biology and a Howard Hughes Medical Institute (HHMI) investigator at UT Southwestern.

In autoimmune diseases, the immune system turns against the body instead of protecting it. AGS is a rare genetic disorder that mainly affects the brain, while SLE can affect the skin, joints, kidneys, brain, and other organs. Neither disease has a cure, only treatments to control symptoms.

Dr. Chen said cGAS is likely amenable to inhibition by small-molecule drugs and that the recent determination of the high-resolution structures of cGAS should facilitate development of such inhibitors.

The work builds on two back-to-back studies the Chen lab published in Science in late 2012 that identified cGAS as a sensor of innate immunity - the body's first line of defense against invaders. A commentary in the same issue of PNAS refers to the Chen lab's identification of that long-sought sensor of DNA in the cytoplasm, the cell's gel-like interior, as a "groundbreaking discovery."

The Science studies described a novel cell signaling pathway that starts when cGAS detects foreign DNA, such as viral DNA, and sounds the alarm. That alarm sets off an inflammatory cascade that induces antiviral molecules, including a family of secreted proteins called interferons. The same elegant system can trigger autoimmune disease when self-DNA is inappropriately present in the cytoplasm, Dr. Chen explained.

The current study in PNAS examined TREX1, a protein that digests DNA in the cell's interior. Loss-of-function mutations in the gene that codes for the TREX1 protein are linked to AGS and SLE in humans. Like humans, mice lacking TREX1 exhibit autoimmunity, inflammation, and elevated levels of interferons, the researchers report. When the researchers genetically inhibited cGAS in those mice, their symptoms disappeared.

"Even deletion of just one of the two genes for cGAS largely rescued the mice from the autoimmune disease," said Dr. Chen, who also is an investigator in the Center for the Genetics of Host Defense and holder of the George L. MacGregor Distinguished Chair in Biomedical Science.

The researchers also studied mice genetically engineered to lack a DNA-digesting enzyme called DNase-II. While the resulting inability to degrade lysosomal DNA led to lethal autoimmunity, once again cGAS inhibition rescued the mice, the researchers report.

-end-

Graduate student Daxing Gao and postdoctoral researcher Dr. Tuo Li were the study's lead authors. Other UT Southwestern researchers involved in the study were Dr. Xiao-Dong Li, a former Instructor in Molecular Biology who is now Assistant Professor at UT Health Science Center at San Antonio; Dr. Xiang Chen, a research scientist in Molecular Biology and a research specialist with the HHMI; Dr. Quan-Zhen Li, Associate Professor of Immunology and Internal Medicine; and Dr. Mary Wight-Carter, Assistant Director of the Animal Resources Center.

The work was supported by grants from the National Institutes of Health, the Welch Foundation, the Cancer Prevention and Research Institute of Texas, a Lupus Research Institute Distinguished Innovator award, and the HHMI.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of more than 2,700 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to about 92,000 hospitalized patients and oversee approximately 2.1 million outpatient visits a year.

This news release is available on our home page at http://www.utsouthwestern.edu/home/news/index.html

UT Southwestern Medical Center
Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.