Winters on Mars are shaping the Red Planet's landscape

October 27, 2017

Researchers based millions of kilometres from Mars have unveiled new evidence for how contemporary features are formed on the Red Planet. Their innovative lab-based experiments on carbon dioxide (CO2) sublimation - the process by which a substance changes from a solid to a gas without an intermediate liquid phase - suggest the same process is responsible for altering the appearance of sand dunes on Mars.

The research was led by a Trinity College Dublin team comprising PhD candidate in the School of Natural Sciences, Lauren Mc Keown, and Dr Mary Bourke, along with Professor Jim McElwaine of Durham University. Their work, which describes phenomena unlike anything seen on Earth, has just been published in the Nature journal Scientific Reports.

Lauren Mc Keown said: "We've all heard the exciting news snippets about the evidence for water on Mars. However, the current Martian climate does not frequently support water in its liquid state -- so it is important that we understand the role of other volatiles that are likely modifying Mars today."

"Mars' atmosphere is composed of over 95% CO2, yet we know little about how it interacts with the surface of the planet. Mars has seasons, just like Earth, which means that in winter, a lot of the CO2 in the atmosphere changes state from a gas to a solid and is deposited onto the surface in that form. The process is then reversed in the spring, as the ice sublimates, and this seasonal interplay may be a really important geomorphic process."

Dr Bourke added: "Several years ago I discovered unique markings on the surface of Martian sand dunes. I called them Sand Furrows as they were elongated shallow, networked features that formed and disappeared seasonally on Martian dunes. What was unusual about them was that they appeared to trend both up and down the dune slopes, which ruled out liquid water as the cause."

"At that time I proposed that they had been formed by cryo-venting -- a process whereby pressurised CO2 gas beneath the seasonal ice deposit erodes complex patterns on the dune surface when the ice fractures and releases the gas in towering dust and gas geysers. I was delighted when Lauren joined the Earth and Planetary Surface Process Group in the Department of Geography to work on this phenomenon with Jim and myself. What was required was a demonstration of how sand would respond to sublimation of CO2 ice, and this published work is an important step in providing that required proof."

The researchers designed and built a low humidity chamber and placed CO2 blocks on the granular surface. The experiments revealed that sublimating CO2 can form a range of furrow morphologies that are similar to those observed on Mars.

Linear gullies are another example of active Martian features not found on Earth. They are long, sometimes sinuous, narrow carvings thought to form by CO2 ice blocks which fall from dune brinks and 'glide' downslope.

Lauren Mc Keown said: "The difference in temperature between the sandy surface and the CO2 block will generate a vapor layer beneath the block, allowing it to levitate and maneuver downslope, in a similar manner to how pucks glide on an ice-hockey table, carving a channel in its wake. At the terminus, the block will sublimate and erode a pit. It will then disappear without a trace other than the roughly circular depression beneath it."

"While gullies on Earth are commonly formed by liquid water, they almost always terminate in debris aprons and not pits. The presence of pits therefore provides more support for a hypothesis whereby CO2 blocks are responsible for linear gullies."

By sliding dry ice blocks onto the sand bed in the low humidity chamber, the group showed that stationary blocks could erode negative topography in the form of pits and deposit lateral levees. In some cases, blocks sublimated so rapidly that they burrowed beneath the subsurface and were swallowed up by the sand in under 60 seconds.

Professor McElwaine said: "This process is really unlike anything seen to occur naturally on Earth - the bed appears fluidised and sand is kicked up in every direction. When we first observed this particular effect, it was a really exciting moment."

By generating 3-D models of the modified bed in each case, pit dimensions could be used to predict the range of block sizes that would erode the pits seen on Mars, which vary in diameter from 1 m to up to 19 m. A pit on Russell Crater megadune on Mars was observed to grow within one Mars Year to an extent predicted by these calculations, following the observation of a block within it the previous year.

The next phase of work, supported by Europlanet Horizon 2020 funding, will see the team head to the Open University Mars Chamber to assess the influence of Martian atmospheric conditions on these new geomorphic processes and test a numerical model developed by Professor McElwaine.
-end-


Trinity College Dublin

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.