How hibernators could help humans treat illness, conserve energy and get to Mars

October 27, 2018

New Orleans (October 27, 2018)--Researchers will gather today to discuss the potential for hibernation and the related process, torpor, to aid human health in spaceflight at the American Physiological Society's (APS) Comparative Physiology: Complexity and Integration conference in New Orleans.

To survive times when food is scarce and temperatures are low, some animals enter hibernation--a physiological process that reduces their normal metabolism to low levels for days or weeks at a time. These periods of low metabolism, known as torpor, allow the animal's body temperature to fall to just above the surrounding air temperature, thus conserving energy. Humans do not naturally undergo torpor, but scientists are interested in the idea of producing states of "synthetic" torpor in certain situations, including spaceflight, explained symposium co-chair Hannah Carey, PhD, from the University of Wisconsin School of Veterinary Medicine. "Harnessing naturally evolved torpor to benefit human spaceflight." "Synthetic torpor could protect astronauts from space-related health hazards and simultaneously reduce demands on spacecraft mass, volume and power capacities," said Matthew Regan, PhD, also from the University of Wisconsin School of Veterinary Medicine and symposium co-chair.

The symposium will explore how synthetic torpor might be induced by the brain, its similarities and differences to sleep, and how it could benefit astronauts. Speakers will include Carey; Matteo Cerri, MD, PhD, from the University of Bologna in Italy; Vladyslav Vyazovskiy, PhD, from the University of Oxford in the U.K.; and astronaut Jessica Meir, PhD, from NASA.

Studying hibernation in mammals--how they are able to safely lower their body temperature and metabolism for extended periods of time--may also aid treatment of people experiencing traumatic medical events, such as stroke, cardiac arrest and severe blood loss. Animals that use torpor have a natural resistance to various injuries that can happen due to lack of blood flow. They are also resistant to radiation injury--such a resistance would be especially beneficial to humans in deep space. Carey will discuss why use of synthetic torpor based on the biology of natural hibernators is preferable to current medical practices that use hypothermia-based methods to treat trauma patients. She will also discuss how hibernation research can identify how to create synthetic torpor for space travel.

How the nervous system reduces metabolic activity during torpor is unknown. However, many of the organs that regulate metabolism are controlled by nerve cells (neurons) located in the raphe pallidus, an area of the brainstem that controls the production of heat in mammals. "For an animal to enter torpor, the neurons within the raphe pallidus have to be inhibited," Cerri explained. If function in these cells is not suppressed, "their activity would counteract the hypothermia induced by torpor," he said. Cerri will present preliminary results identifying neurons projecting to the raphe pallidus and involved in torpor-related activity.

Defining the relationship between sleep and torpor has been fraught with controversy, but the two states appear to be intimately linked because of the neuronal connections they share. Research suggests that lack of available food sources may cause mammals to conserve energy and lower their body temperature, two hallmark characteristics of torpor. However, "less is known about the specific fasting-related signals which initiate entry into torpor," Vyazovskiy said. He will discuss the connection between sleep and torpor and why more research is needed to determine how torpor affects brain function in animals.

Some of the physiological adaptations that animals exhibit--such as the low-oxygen environments that seals and penguins experience with deep diving or that birds experience on a high-altitude flight--are impossible for humans. Understanding how animals adapt in extreme conditions may play a positive role in human medical science, especially in the "extreme environment of space," Meir said. The increasingly real possibility of traveling to Mars--once just a science fiction story--emphasizes the need to resolve factors that have hampered the feasibility of long-duration spaceflight, including having an ample supply of food, water and breathable air. Finding a way to induce torpor in humans could help eliminate limiting factors as well as protect astronauts from harmful radiation. Meir's talk will provide insight from her unique perspective and experience as an astronaut, discussing the architecture for NASA's current and future human spaceflight missions.
-end-
The symposium "Harnessing naturally evolved torpor to benefit human spaceflight" will be held on Saturday, October 27, at the Astor Crowne Plaza-New Orleans French Quarter.

NOTE TO JOURNALISTS: The Comparative Physiology: Complexity and Integration conference will be held October 25-28 in New Orleans. To schedule an interview with a member of the research team, please contact the APS Communications Office or 301-634-7314. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,000 members and publishes 15 peer-reviewed journals with a worldwide readership.

American Physiological Society

Related Metabolism Articles from Brightsurf:

Early trauma influences metabolism across generations
A study by the Brain Research Institute at UZH reveals that early trauma leads to changes in blood metabolites - similarly in mice and humans.

Cannabinoids decrease the metabolism of glucose in the brain
What happens when THC acts on the glial cells named astrocytes ?

New role of arginine metabolism in plant morphogenesis identified
A research team led by ExCELLS/NIBB found that arginine metabolism has a vital role in regulating gametophore shoot formation in the moss Physcomitrium patens.

Watching changes in plant metabolism -- live
Almost all life on Earth, e.g. our food and health, depend on metabolism in plants.

redHUMAN: Deciphering links between genes and metabolism
Scientists at EPFL have developed a new method that simplifies the processing of genetic-metabolic data by picking up changes in metabolism, a hallmark of numerous diseases like cancer and Alzheimer's.

Lipid metabolism controls brain development
A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

Viruses don't have a metabolism; but some have the building blocks for one
'Giant viruses' are many times larger than typical viruses and have more complex genomes.

New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.

Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.

Read More: Metabolism News and Metabolism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.