Cleveland Clinic-led research team identifies differences between benign and pathogenic variants

October 27, 2020

CLEVELAND - An international team of researchers led by Cleveland Clinic's Lerner Research Institute has performed for the first time a wide-scale characterization of missense variants from 1,330 disease-associated genes. Published in Proceedings of the National Academy of Sciences, the study identifies features associated with pathogenic and benign variants that reveal the effects of the mutations at a molecular level.

"Our study serves as a powerful resource for the translation of personal genomics to personal diagnostics and precision medicine, and can aid variant interpretation, inform experiments and help accelerate personalized drug discovery," said Dennis Lal, PhD, assistant staff, Genomic Medicine, and the study's lead author. Recent large-scale DNA sequencing efforts have detected millions of missense variants, where mistakes in the DNA code change the amino acid (molecular building block of a protein) makeup of proteins. Some of these variants are pathogenic, meaning they alter the structure and function of a protein in a way that leads to disease, while others are benign with no impact on health. The vast majority, however, are considered variants of uncertain significance because their effects remain unknown.

While methods to predict variant pathogenicity exist, they do not elucidate why some variants are more or less likely to cause disease than others or establish their functional impact. Additionally, pathogenic and benign variants can co-exist in almost every disease-associated gene. As such, gaining a better understanding of the mechanistic differences between benign and pathogenic variants will be a critical next step in the development of novel therapies for genetic disorders.

Considering that a protein's function is closely linked to its three-dimensional structure, in this study the research team identified and compared the protein features of amino acids affected by pathogenic versus benign missense variants. Features that are more frequently mutated in pathogenic variants compared to benign variants (3D mutational hotspots) are likely crucial to protein fitness and thus could help explain the molecular determinants of pathogenicity.

Looking at 1,330 disease-associated genes, the researchers analyzed a set of 40 features and found that 18 were significantly associated with pathogenic variants, 14 were significantly associated with benign variants and the remaining eight had no significant association with any variant type.

"By considering genetic variation in the context of proteins' three-dimensional organization, we present for the first time an atlas of molecular properties of pathogenic mutations that addresses the differences between benign and disease-causing mutations," said Lal. "This study focused on 1,330 genes associated with rare types of genetic disorders, so we are currently extending our project to look at more genes and milder disorders." Data from this study (including precomputed P3DFiDAGS1330 and P3DFiProteinclass values for every possible amino acid exchange in proteins encoded by 1,330 disease-associated genes, along with the explicit listing of the 3D features of the altered site as the rationale for the index) is available through the dedicated web server MISCAST.
Sumaiya Iqbala, PhD, is first author on the study, which was supported by the Stanley Center for Psychiatric Research. Iqbala is a post-doctoral research associate at the Broad Institute of MIT and Harvard and the Analytical and Translational Genetics Unit at Massachusetts General Hospital.

The study can be accessed here:

Cleveland Clinic

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to