Ultraheavy precision polymers

October 27, 2020

An environmentally friendly and sustainable synthesis of "heavyweight" polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry. Thanks to a new photoenzymatic process, Chinese researchers have been able to increase the range of possible monomers. As reported in the journal Angewandte Chemie, the researchers were able to obtain well-defined linear and star-shaped polymers with ultrahigh molecular weights.

Because many polymer properties depend heavily on molecular weight, it is desirable to have as narrow a molecular weight distribution as possible. Precision polymers with ultrahigh molecular weights (> 1 t/mol) would be interesting candidates for high-performance elastomers, low-concentration hydrogels, photonic materials, durable coatings, and flocking agents. However, such heavyweight polymers are not easy to produce with a uniform distribution of molecular weights. The radical polymerizations in widespread use are especially difficult to control in this respect. Modern methods, such as RAFT polymerization (RAFT: reversible addition-fragmentation chain transfer) offer a significantly higher degree of control by keeping the concentration of reactive radicals very small. A special agent reacts reversibly with the growing polymer chains to form a nonradical species. Whenever the intermediate dissociates, new active radicals are formed. This slows the reaction and results in longer, more uniform polymer chains.

Ultraheavy polymers with narrow weight distributions were previously only attainable from conjugated monomers, meaning compounds with at least two C=C double bonds separated by a single bond. It has never been possible to make such polymers from nonconjugated polymers whose vinyl group (-CH=CH(2)) is bound directly to a noncarbon atom.

Zesheng An (Jilin University, Changchun) and Ruoyu Li (Shanghai University) have overcome this challenge with a simple, environmentally friendly, RAFT polymerization that is based on enzymatic photocatalysis. The enzyme glucose oxidase (GOx) oxidizes glucose with oxygen, reducing the flavin-containing cofactor FAD to FADH(?). The latter acts as a photocatalyst when irradiated with visible light, starting the radical chain reaction. GOx consumes the oxygen present in the solution--another advantage because oxygen disrupts conventional radical polymerizations and must be removed beforehand. The chain propagation agents they use are xanthates (sulfur-containing carboxylic acid derivatives).

The researchers attained well-defined linear and star-shaped polymers in nearly quantitative yield, as well as various copolymers with previously unattainable uniform ultrahigh molecular weights, starting from nonconjugated monomers. The reaction, which offers outstanding control over composition, molecular weight, and architecture, is simple to carry out and takes place under mild conditions (10 °C) in water.
About the Author

Dr. Zesheng An is a Professor of State Key Laboratory of Supramolecular Structure and Materials and an adjunct Professor of Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education at Jilin University, China. His research interests include controlled radical polymerization, enzyme catalysis, and self-assembly.



Related Polymers Articles from Brightsurf:

Ultraheavy precision polymers
An environmentally friendly and sustainable synthesis of ''heavyweight'' polymers with very narrow molecular weight distributions is an important concept in modern polymer chemistry.

FSU researchers help develop sustainable polymers
Researchers at the FAMU-FSU College of Engineering have made new discoveries on the effects of temperature on sustainable polymers.

Structural colors from cellulose-based polymers
A surface displays structural colors when light is reflected by tiny, regular structural elements in a transparent material.

Growing polymers with different lengths
ETH researchers have developed a new method for producing polymers with different lengths.

Exciting new developments for polymers made from waste sulfur
Researchers at the University of Liverpool are making significant progress in the quest to develop new sulfur polymers that provide an environmentally friendly alternative to some traditional petrochemical based plastics.

Polymers can fine-tune attractions between suspended nanocubes
In new research published in EPJ E, researchers demonstrate a high level of control over a type of colloid in which the suspended particles take the form of hollow, nanoscale cubes.

Functional polymers to improve thermal stability of bioplastics
One of the key objectives for contemporary chemistry is to improve thermomechanical properties of polymers, in particular, thermostability of bioplastics.

Fluorescent technique brings aging polymers to light
Modern society relies on polymers, such as polypropylene or polyethylene plastic, for a wide range of applications, from food containers to automobile parts to medical devices.

Polymers to the rescue! Saving cells from damaging ice
Research published in the Journal of the American Chemical Society by University of Utah chemists Pavithra Naullage and Valeria Molinero provides the foundation to design efficient polymers that can prevent the growth of ice that damages cells.

Mixing the unmixable -- a novel approach for efficiently fusing different polymers
Cross-linked polymers are structures where large molecular chains are linked together, allowing exceptional mechanical properties and chemical resistance to the final product.

Read More: Polymers News and Polymers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.