Photovoltaics industry can help meet Paris agreement targets

October 27, 2020

WASHINGTON, October 27, 2020 -- To meet the Paris Agreement's daunting goal of preventing Earth's average temperature from rising more than 2 degrees Celsius (3.6 degrees Fahrenheit) above its level in preindustrial times, one of the best options for the energy economy will involve a shift to 100% renewable energy using solar energy and several other clean energy sources.

While no one knows exactly how an increase above 2 degrees Celsius would impact the planet, extraordinary climatic events would likely make many parts of the world uninhabitable with significant desertification, ocean acidification, and rise of seawater level, as well as floods, wildfires, hurricanes, and tornadoes.

In the Journal of Renewable and Sustainable Energy, from AIP Publishing, Pierre J. Verlinden, founder of AMROCK Pty. Ltd. in Australia, describes a model developed to predict what is necessary for the solar industry to meet Paris Agreement targets.

"Our planet is on the path of an average temperature increase of 4 degrees Celsius before the end of this century, with respect to the average Earth temperature before the industrial age, and the result will be catastrophic," Verlinden said.

Climate experts predict only 800 gigatons of carbon dioxide can be emitted before crossing the 2 degrees Celsius line. This means that at the current global emission of 36 gigatons per year, there is a 35-year window to reduce our emissions to zero.

One way to achieve this goal is to change the way energy is produced and consumed.

"Our vision is solar photovoltaics can play a central role in a transformed sustainable energy economy with 100% decarbonized electricity generation to power directly or indirectly -- through the production of green hydrogen or other synthetic fuels -- all energy sectors and industrial processes," said Verlinden.

The world will require, in addition to other renewable energy sources like wind and hydro, about 70 to 80 terawatts of cumulative capacity from solar photovoltaic systems. This represents more than 100 times the world's current solar photovoltaic installed capacity.

"Within the next 10 years, the industry needs to increase its production rate by a factor of about 30," he said.

A model developed by Verlinden and colleagues to predict the efficiency of solar cells and their cost to manufacture during the next few decades shows there "is no fundamental barrier to achieving this goal," he said.

The financial requirement to grow the production rate (capital expenditures to build new production lines) is decreasing at a rate of 18% per year, driven by productivity improvements and a combination of higher-throughput per tool, larger wafers, and improved cell efficiency.

"In terms of material sustainability, the only major issue is the use of silver for metallization of silicon solar cells," said Verlinden. "We need to reduce the use of silver in silicon solar cells from about 29 tons per gigawatt to less than 5 tons per gigawatt."

He cautions that while the objective of a cumulative installation of 70 or 80 terawatts by 2055 is achievable with a simple annual growth of the production rate of about 15% per year, pursuing this goal will result in a solar photovoltaic industry much larger than necessary. This could lead to a significant downturn when the objective of 80 terawatts is reached.

"This negative impact can be avoided if we right now accelerate the growth during the next 10 years and then stabilize the global production to 3 to 4 terawatts per year," Verlinden said.
-end-
The article, "Future challenges for photovoltaic manufacturing at the terawatt level," is authored by Pierre J. Verlinden. It will appear in the Journal of Renewable and Sustainable Energy on October 27, 2020 (DOI: 10.1063/5.0020380). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0020380.

ABOUT THE JOURNAL

Journal of Renewable and Sustainable Energy is an interdisciplinary journal that publishes across all areas of renewable and sustainable energy relevant to the physical science and engineering communities. Topics covered include solar, wind, biofuels and more, as well as renewable energy integration, energy meteorology and climatology, and renewable resourcing and forecasting. See https://aip.scitation.org/journal/rse.

American Institute of Physics

Related Solar Cells Articles from Brightsurf:

Solar cells of the future
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability.

A blast of gas for better solar cells
Treating silicon with carbon dioxide gas in plasma processing brings simplicity and control to a key step for making solar cells.

Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.

Next gen solar cells perform better when there's a camera around
A literal ''trick of the light'' can detect imperfections in next-gen solar cells, boosting their efficiency to match that of existing silicon-based versions, researchers have found.

On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.

Exciting tweaks for organic solar cells
A molecular tweak has improved organic solar cell performance, bringing us closer to cheaper, efficient, and more easily manufactured photovoltaics.

For cheaper solar cells, thinner really is better
Researchers at MIT and at the National Renewable Energy Laboratory (NREL) have outlined a pathway to slashing costs further, this time by slimming down the silicon cells themselves.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

Perovskite solar cells get an upgrade
Rice University materials scientists find inorganic compounds quench defects in perovskite-based solar cells and expand their tolerance of light, humidity and heat.

Can solar technology kill cancer cells?
Michigan State University scientists have revealed a new way to detect and attack cancer cells using technology traditionally reserved for solar power.

Read More: Solar Cells News and Solar Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.