Genetic analysis of B. infantis strains reveal functional superiority of activated EVC001 in infants

October 27, 2020

DAVIS, Calif., Oct. 27, 2020 - While an infant's genes distinguish her from other newborns, a new peer-reviewed study reports that specific genes of a particular infant gut bacterium determine its symbiotic function in the infant gut. The study provides important guidance for clinicians when selecting a probiotic for use in infants to maximize impact on both short- and long-term health outcomes.

In the first study to provide a genetic analysis of various strains of the infant probiotic bacteria Bifidobacterium longum subsp. infantis (B. infantis), researchers report that one particular strain of probiotic B. infantis, EVC001, possesses the genetic make-up that enables full metabolism of the nutritional components of human breast milk, the first step in providing important health benefits to the infant. The paper was published in the peer-reviewed journal .

"Gut bacteria are living organisms, and thus have different genes that determine how they function. What we've revealed in this paper is a truly elegant mechanism of action that is unique to EVC001 among the probiotic strains that were studied; it's a striking distinction that defines clear genetic differences that make some B. infantis strains far more beneficial to the health of infants than others," said Rebbeca Duar, Ph.D., lead study author and senior scientist, Evolve BioSystems., Inc.

B. infantis EVC001 has been documented for its critical role in restoring function and resolving dysbiosis by suppressing potentially pathogenic bacteria in newborns, supporting immune and gastrointestinal system development, and reducing intestinal inflammation. Infant gut dysbiosis has been linked to the development of necrotizing enterocolitis (NEC), asthma, eczema, food allergies, and Type-1 diabetes.

B. infantis EVC001 provides health benefits to infants by optimally metabolizing components of breast milk called human milk oligosaccharides (HMO) into lactate and acetate, which in turn lowers the pH of the infant gut to a protective range. As a result, EVC001 has been shown to effectively suppress the abundance of pathogenic bacteria in the infant gut, reducing intestinal inflammation and lowering antibiotic resistance in both term and pre-term infants.

The researchers studied 14 different strains of B. infantis sourced from commercially available infant probiotic products as well as bacterial culture banks. Each bacterial strain underwent DNA sequencing based on the presence or absence of the H5 gene cluster, which contains key genes involved in the transport of HMOs into the bacterial cell, where it then undergoes deconstruction and metabolism.

Researchers then measured the growth rates of each strain on HMO(s), correlating the growth rates to the H5 genetic profiles of each bacterial strain to determine the ability to metabolize and utilize all HMOs as a fuel source.

Of the 12 commercial probiotic strains of B. infantis studied, one strain in particular, known as EVC001, showed twice as much growth than the other strains, and within one day had outgrown all other strains analyzed. Study authors note that growth and colonization of this bacteria correlate to optimal infant gut health.

"The importance of the infant gut microbiome for the health of babies has been widely documented, and the use of infant probiotics in the therapeutic portfolio is growing," said Dr. Duar. "This research represents a critical step forward by demonstrating that there are clear genetic and functional differences among different strains of B. infantis. In short, strain matters, since the choice of a particular strain will significantly impact the clinical and health benefits B. infantis will bring to the baby."

About Evolve BioSystems, Inc.


Evolve BioSystems

Related Infants Articles from Brightsurf:

Most infants are well even when moms are infected by COVID-19
Infants born to women with COVID-19 showed few adverse outcomes, according to the first report in the country of infant outcomes through eight weeks of age.

Probiotic may help treat colic in infants
Probiotics -- or 'good bacteria' -- have been used to treat infant colic with varying success.

Deaf infants' gaze behavior more advanced than that of hearing infants
Deaf infants who have been exposed to American Sign Language are better at following an adult's gaze than their hearing peers, supporting the idea that social-cognitive development is sensitive to different kinds of life experiences.

Initiating breastfeeding in vulnerable infants
The benefits of breastfeeding for both mother and child are well-recognized, including for late preterm infants (LPI).

Young infants with fever may be more likely to develop infections
Infants with a high fever may be at increased risk for infections, according to research from Penn State College of Medicine.

Early term infants less likely to breastfeed
A new, prospective study provides evidence that 'early term' infants (those born at 37-38 weeks) are less likely than full-term infants to be breastfeed within the first hour and at one month after birth.

Infants are more likely to learn when with a peer
Researchers at the University of Connecticut and University of Washington looked at the mechanisms involved in language learning among nine-month-olds, the youngest population known to be studied in relation to on-screen learning.

Allergic reactions to foods are milder in infants
Majority of infants with food-induced anaphylaxis present with hives and vomiting, suggesting there is less concern for life-threatening response to early food introduction.

Non-dairy drinks can be dangerous for infants
A brief report published in Acta Paediatrica points to the dangers of replacing breast milk or infant formula with a non-dairy drink before one year of age.

Infants can't talk, but they know how to reason
A new study reveals that preverbal infants are able to make rational deductions, showing surprise when an outcome does not occur as expected.

Read More: Infants News and Infants Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to