Tailoring 2D materials to improve electronic and optical devices

October 27, 2020

New possibilities for future developments in electronic and optical devices have been unlocked by recent advancements in two-dimensional (2D) materials, according to Penn State researchers.

The researchers, led by Shengxi Huang, assistant professor of electrical engineering and biomedical engineering at Penn State, recently published the results of two separate but related discoveries regarding their success with altering the thin 2D materials for applications in many optical and electronic devices. By altering the material in two different ways -- atomically and physically -- the researchers were able to enhance light emission and increase signal strength, expanding the bounds of what is possible with devices that rely on these materials.

In the first method, the researchers modified the atomic makeup of the materials. In commonly used 2D materials, researchers rely on the interaction between the thin layers, known as van der Waals interlayer coupling, to create charge transfer that is then used in devices. However, this interlayer coupling is limited because the charges are traditionally distributed evenly on the two sides of each layer.

In order to strengthen the coupling, the researchers created a new type of 2D material known as Janus transition metal dichalcogenides by replacing atoms on one side of the layer with a different type of atoms, creating uneven distribution of the charge.

"This [atomic change] means the charge can be distributed unevenly," Huang said. "That creates an electric field within the plane, and can attract different molecules because of that, which can enhance light emission."

Also, if van der Waals interlayer coupling can be tuned to the right level by twisting layers with a certain angle, it can induce superconductivity, carrying implications for advancements in electronic and optical devices.

In the second method of altering 2D materials to improve their capabilities, the researchers strengthened the signal that resulted from an energy up-conversion process by taking a layer of MoS2, a common 2D material that is usually flat and thin, and rolling it into a roughly cylindrical shape.

The energy conversion process that takes place with the MoS2 material is part of a nonlinear optical effect where, if a light is shined into an object, the frequency is doubled, which is where the energy conversion comes in.

"We always want to double the frequency in this process," Huang said. "But the signal is usually very weak, so enhancing the signal is very important."

By rolling the material, the researchers achieved a more than 95 times signal improvement.

Now, Huang plans to put these two advances together.

"The next step for our research is answering how we can combine atomic engineering and shape engineering to create better optical devices," she said.
A paper on the research of the atomic structure, "Enhancement of van der Waals Interlayer Coupling through Polar Janus MoSSe," was recently published in the Journal of the American Chemical Society (ACS). The paper on the research of rolling the materials, "Chirality-Dependent Second Harmonic Generation of MoS2-Nanoscroll with Enhanced Efficiency," was published recently in ACS Nano.

Penn State

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.