Brain's 'hate circuit' identified

October 28, 2008

People who view pictures of someone they hate display activity in distinct areas of the brain that, together, may be thought of as a 'hate circuit', according to new research by scientists at UCL (University College London).

The study, by Professor Semir Zeki and John Romaya of the Wellcome Laboratory of Neurobiology at UCL, examined the brain areas that correlate with the sentiment of hate and shows that the 'hate circuit' is distinct from those related to emotions such as fear, threat and danger - although it shares a part of the brain associated with aggression. The circuit is also quite distinct from that associated with romantic love, though it shares at least two common structures with it.

The results, published today in PLoS One, are an extension of previous studies on the brain mechanisms of romantic and maternal love from the same laboratory. Explaining the idea behind the research, Professor Zeki said:

"Hate is often considered to be an evil passion that should, in a better world, be tamed, controlled, and eradicated. Yet to the biologist, hate is a passion that is of equal interest to love. Like love, it is often seemingly irrational and can lead individuals to heroic and evil deeds. How can two opposite sentiments lead to the same behaviour?"

To compare their present results with their previous ones on romantic love, Zeki and Romaya specifically studied hate directed against an individual. Seventeen subjects, both female and male, had their brains scanned while viewing pictures of their hated person as well as that of neutral faces with which they were familiar. Viewing a hated person showed activity in distinct areas of the brain that, together, may be thought of as a 'hate circuit'.

The 'hate circuit' includes structures in the cortex and in the sub-cortex and has components that are important in generating aggressive behaviour, and translating this into action through motor planning, as if the brain becomes mobilised to take some action. It also involves a part of the frontal cortex that has been considered critical in predicting the actions of others, probably an important feature when one is confronted by a hated person.

The subcortical activity involves two distinct structures, the putamen and insula. The former, which has been implicated in the perception of contempt and disgust, may also be part of the motor system that is mobilised to take action, since it is known to contain nerve cells that are active in phases preparatory to making a move.

Professor Zeki added: "Significantly, the putamen and insula are also both activated by romantic love. This is not surprising. The putamen could also be involved in the preparation of aggressive acts in a romantic context, as in situations when a rival presents a danger. Previous studies have suggested that the insula may be involved in responses to distressing stimuli, and the viewing of both a loved and a hated face may constitute such a distressing signal.

"A marked difference in the cortical pattern produced by these two sentiments of love and hate is that, whereas with love large parts of the cerebral cortex associated with judgment and reasoning become de-activated, with hate only a small zone, located in the frontal cortex, becomes de-activated. This may seem surprising since hate can also be an all-consuming passion, just like love. But whereas in romantic love, the lover is often less critical and judgmental regarding the loved person, it is more likely that in the context of hate the hater may want to exercise judgment in calculating moves to harm, injure or otherwise extract revenge.

"Interestingly, the activity in some of these structures in response to viewing a hated face is proportional in strength to the declared intensity of hate, thus allowing the subjective state of hate to be objectively quantified. This finding may have legal implications in criminal cases, for example."

Unlike romantic love, which is directed at one person, hate can be directed against entire individuals or groups, as is the case with racial, political, or gender hatred. Professor Zeki said that these different varieties of hate will be the subject of future studies from his laboratory.
-end-
Notes for Editors

1.) For further information, or to arrange an interview with Professor Zeki, please contact Ruth Metcalfe in the UCL Media Relations Office on tel: +44 (0)20 7679 9739, mobile: +44 (0)7990 675 947, out of hours: +44 (0)7917 271 364, e-mail: r.metcalfe@ucl.ac.uk

2.) 'Neural Correlates of Hate' will be published in PLoS ONE with the press embargo ending at 00.00 UK Time Tuesday 28th October 2008 (17.00 Pacific Time/20.00 Eastern). On publication, the paper will be available online at http://dx.plos.org/10.1371/journal.pone.0003556 Journalists seeking advance copies should contact UCL Media Relations using the details above.

3.) Images related to the study are available from UCL Media Relations.

4.) The Wellcome Laboratory of Neurobiology at UCL is supported by the Wellcome Trust.

About UCL

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. In the government's most recent Research Assessment Exercise, 59 UCL departments achieved top ratings of 5* and 5, indicating research quality of international excellence.

UCL is in the top ten world universities in the 2007 THES-QS World University Rankings, and the third-ranked UK university in the 2008 league table of the top 500 world universities produced by the Shanghai Jiao Tong University. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay.

The Wellcome Trust

The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending around £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. http://www.wellcome.ac.uk

University College London

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.