Researchers detail possible resistance mechanisms of colorectal cancer to bevacizumab (Avastin)

October 28, 2013

A University of Colorado Cancer Center study published in the journal PLOS ONE shows that when colorectal cancer is targeted by the drug bevacizumab (Avastin), tumors may switch dependence from VEGF-A, which is targeted by the drug, to related growth factors in including VEGF-C, VEGF-D and placental growth factor. This change to new growth-factor dependence may allow colorectal cancer to push past bevacizumab's blockage of VEGF-A to continue to drive tumor growth.

"Think of it like damming a river. Bevacizumab can block the main flow, but then once a tumor's need builds up behind this dam, water starts to flow around the blockage in the form of streams and tributaries. That's like these other growth factors - eventually a tumor becomes able to use these tributaries of VEGF-C, VEGF-D and placental growth factor to supply itself with the 'water' it needs," says Christopher Lieu, MD, investigator at the CU Cancer Center and assistant professor of Medical Oncology at the University of Colorado School of Medicine.

The analogy of liquid is an apt one - bevacizumab slows cancer's growth by limiting a tumor's ability to grow the new blood vessels it needs to supply itself with nutrients. Especially in combination with chemotherapy, bevacizumab has proved an effective treatment for colorectal cancer. But then there frequently comes a point at which bevacizumab stops working and the tumor restarts its growth. This study asked why.

Specifically, Lieu and colleagues serially tested the levels of other VEGF-related growth factors in 42 patients treated with bevacizumab and chemotherapy, at many points during the course of their treatment.

"What we saw is that levels of VEGF-C and placental growth factor went up just before tumors progressed and then stayed high during the periods of tumor growth. Interestingly, VEGF-D was only elevated during progression. But it seems that tumors may be using these growth factors as ways to create blood vessel growth in the absence of VEGF-A, blocked by bevacizumab," Lieu says.

Then the researchers also took a snapshot of levels in 403 colorectal cancer patients, at one time during treatment. Because this group included patients who were and were not being treated with chemotherapy along with bevacizumab, they could show that the rise in VEGF levels was, in fact, due to bevacizumab and not to some interaction with the chemotherapy.

"It's too early to say with certainty that VEGF-C, VEGF-D, and placental growth factor are the cause of colorectal cancer resistance to bevacizumab, but the correlation we saw in this study is compelling," Lieu says.

Current studies are exploring the use of drugs that block more blood-vessel-growth-promoting factors than VEGF-A. For example, Lieu points to the example of aflibercept (Zaltrap), which was given FDA approval in August, 2013 for the treatment of metastatic colorectal cancer, along with the chemotherapy regimen known as FOLFIRI. The drug inhibits placental growth factor along with VEGF-A.

"It's an attractive strategy, and also proof of concept that by targeting not only the primary mechanism of tumor growth but also one or more of these 'workarounds,' this drug or other future drugs could stall growth longer than blocking any one of these growth factors, individually," Lieu says.

Lieu points out that in addition to targeting these additional growth factors, the fact that spikes in VEGF-C and placental growth factor presage tumor progression could give doctors and researchers a clue that bevacizumab has lost its efficacy. Though more work is needed, Lieu can imagine using spikes in VEGF-C or prenatal growth factor to recommend evaluating new treatment options.
-end-


University of Colorado Anschutz Medical Campus

Related Chemotherapy Articles from Brightsurf:

Chemotherapy is used to treat less than 25% of people with localized sarcoma
UCLA researchers have found that chemotherapy is not commonly used when treating adults with localized sarcoma, a rare type of cancer of the soft tissues or bone.

Starved cancer cells became more sensitive to chemotherapy
By preventing sugar uptake, researchers succeeded in increasing the cancer cells' sensitivity to chemotherapeutic treatment.

Vitamin D could help mitigate chemotherapy side effects
New findings by University of South Australia researchers reveal that Vitamin D could potentially mitigate chemotherapy-induced gastrointestinal mucositis and provide relief to cancer patients.

Less chemotherapy may have more benefit in rectal cancer
GI Cancers Symposium: Colorado study of 48 patients with locally advanced rectal cancer receiving neoadjuvant chemotherapy, found that patients receiving lower-than-recommended doses in fact saw their tumors shrink more than patients receiving the full dose.

Male fertility after chemotherapy: New questions raised
Professor Delb├Ęs, who specializes in reproductive toxicology, conducted a pilot study in collaboration with oncologists and fertility specialists from the McGill University Health Centre (MUHC) on a cohort of 13 patients, all survivors of pediatric leukemia and lymphoma.

'Combo' nanoplatforms for chemotherapy
In a paper to be published in the forthcoming issue in NANO, researchers from Harbin Institute of Technology, China have systematically discussed the recent progresses, current challenges and future perspectives of smart graphene-based nanoplatforms for synergistic tumor therapy and bio-imaging.

Nanotechnology improves chemotherapy delivery
Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.

Novel anti-cancer nanomedicine for efficient chemotherapy
Researchers have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy.

Ending needless chemotherapy for breast cancer
A diagnostic test developed at The University of Queensland might soon determine if a breast cancer patient requires chemotherapy or would receive no benefit from this gruelling treatment.

A homing beacon for chemotherapy drugs
Killing tumor cells while sparing their normal counterparts is a central challenge of cancer chemotherapy.

Read More: Chemotherapy News and Chemotherapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.