The bee's knees for identifying genetic triggers of novel adult traits

October 28, 2014

Scientists have long sought to identify the specific DNA changes that can trigger new traits, allowing species to adapt. But when animals develop a new trait, are the mutations within the part of the DNA that makes proteins, or, in the master switches that control the gene, modulating its activity to turn on or off?

For development of the embryo, it is usually the master control regions of a gene that dominate, but what about in an adult?

Jasper et al. found that adults play by a different set of rules, relying on the contributions of novel genes---called taxonomically restricted genes (TRGs, that are only found in a given species)---found in honeybees. Honeybees possess many new adult traits to complement social functions, such as glands to make pheromones for social communication, food for young bees, sting glands to protect the hive, and a division of labor. For the study, they focused on nurse bees that eat pollen to make secretions to feed the brood, and foragers, who sprout wings to take flight. They looked at patterns of genes found in 10 tissues that change in the adult bee when transitioning from nursing to foraging.

"We essentially found that the evolution of novel adult traits is strongly based on changes to the protein coding parts of genes," said paper co-author Brian Johnson. "Specifically, the key genes are often those that are expressed in just one tissue at a very high level. Such genes are often novel, that is organism-specific as opposed to common to all animals, and they provide much of the specialized work of the various tissues of the adult organism. Ironically, although this result contrasts sharply with the highly successful Evo-devo paradigm, we generated our hypotheses in part using the same logical framework developed by the Evo-devo researchers. This framework stresses the importance of connectedness in a gene network and how that hinders (or allows) various types of DNA sequence change."

In fast-evolving tissues, they found evidence that TRGs are critical and much more abundant, underlying novel phenotypes by rapidly mutating their protein-coding DNA sequence to perform new cellular functions. Likewise, they did not find TRGs expressed in "old" tissues. These genes were also the least connected ingene networks, allowing them the freedom to develop novelty for the bees, without having a negative effect on survival. This supports their theory that the evolution of novel adult physiological traits occurs in the distal branches of gene networks rather than hubs (unlike in the embryo), making them more free to develop gene changes for new functions as needed.

Molecular Biology and Evolution (Oxford University Press)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to