Variation in antibiotic bacteria in tropical forest soils may play a role in diversity

October 28, 2014

Antibiotic-producing bacteria in soil are the source of many antibiotics used to combat diseases in humans and plants. But, surprisingly little is known about how these microbes impact tropical plant communities and ecosystems, where plant diversity, competition, and pathogen pressures are high.

A study published October 28 in the journal Biotropica represents a step toward a better understanding of the role antibiotic-bacteria play in the ecology of tropical forests. University of Minnesota researchers, led by Kristen Becklund, found that antibiotic production by soil bacteria was widespread, but that the abundance and activity of the microbes varied across the landscape depending, in part, on nutrient availability.

"Our results suggest substantial differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests," says Becklund. "The fact that we are seeing all this variation is exciting because it means that these bacteria may be influencing diversity in tropical forests."

Differences in the capacities of microbial communities to suppress soil-borne diseases in tropical forests could impact the composition of the forest itself. Antibiotics in soil are believed to act as weapons that allow microbes to kill their competitors, including pathogens. This antibiotic inhibition can lead to declines in populations of plant pathogens and can even result in the development of disease-suppressive soils. Because different plants are susceptible to different pathogens and diseases, variation in the abundance, effectiveness and specificity of microbially-produced antibiotics has the potential to influence not only plant disease and productivity, but also the composition of tree species in the forest.

"This study is an initial first step to open the black box of microbial community function in tropical forest soils," says Powers.

Future studies will focus on the causes of the variation in density and activity and the potential consequences for tropical forest communities.
-end-
Becklund is a graduate student in the College of Biological Sciences' Ecology, Evolution and Behavior program. Co-authors include Linda Kinkel, a professor in the Department of Plant Pathology in the College of Food, Agricultural and Natural Resource Sciences, and Jennifer Powers, a professor in the Departments of Ecology, Evolution and Behavior and Plant Biology in the College of Biological Sciences.

University of Minnesota

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.