How Frankenstein saved humankind from probable extinction, Dartmouth-UC Merced study

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." Widely considered the first work of science fiction for exploring the destructive consequences of scientific and moral transgressions, a new study published in "BioScience" argues that the horror of Mary Shelley's gothic novel is rooted in a fundamental principle of biology. (A pdf of the study is available upon request).

The co-authors point to a pivotal scene when the Creature encounters Victor Frankenstein and requests a female companion to mitigate his loneliness. The Creature distinguishes his dietary needs from those of humans and expresses a willingness to inhabit the "wilds of South America," suggesting distinct ecological requirements. Frankenstein concedes to this reasoning given that humans would have few competitive interactions with a pair of isolated creatures, but he then reverses his decision after considering the creatures' reproductive potential and the probability of human extinction, a concept termed competitive exclusion. In essence, Frankenstein was saving humankind.

"The principle of competitive exclusion was not formally defined until the 1930s," said Nathaniel J. Dominy, a professor of anthropology and biological sciences at Dartmouth. "Given Shelley's early command of this foundational concept, we used computational tools developed by ecologists to explore if, and how quickly, an expanding population of creatures would drive humans to extinction."

The authors developed a mathematical model based on human population densities in 1816, finding that the competitive advantages of creatures varied under different circumstances. The worst-case scenario for humans was a growing population of creatures in South America, as it was a region with fewer humans and therefore less competition for resources. "We calculated that a founding population of two creatures could drive us to extinction in as little as 4,000 years," said Dominy. Although the study is merely a thought experiment, it casts new light on the underlying horror of the novel: our own extinction. It also has real-word implications for how we understand the biology of invasive species.

"To date, most scholars have focused on Mary Shelley's knowledge of then-prevailing views on alchemy, physiology and resurrection; however, the genius of Mary Shelley lies in how she combined and repackaged existing scientific debates to invent the genre of science fiction," said Justin D. Yeakel, an Omidyar fellow at the Santa Fe Institute and an assistant professor in the School of Natural Sciences at the University of California, Merced. "Our study adds to Mary Shelley's legacy, by showing that her science fiction accurately anticipated fundamental concepts in ecology and evolution by many decades."
-end-
Available for comment are study co-authors Nathaniel J. Dominy of Dartmouth at nathaniel.j.dominy@dartmouth.edu and Justin D. Yeakel of the Santa Fe Institute and University of California, Merced, at jyeakel@ucmerced.edu.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Dartmouth College

Related Biology Articles from Brightsurf:

Experimental Biology press materials available now
Though the Experimental Biology (EB) 2020 meeting was canceled in response to the COVID-19 outbreak, EB research abstracts are being published in the April 2020 issue of The FASEB Journal.

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.

Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.

A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.

Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.

Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.

The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.

Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.

Read More: Biology News and Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.