Nav: Home

Breakthrough in the production of dopamine neurons for Parkinson's disease

October 28, 2016

The first transplantation of stem cells in patients with Parkinson's disease is almost within reach. However, it remains a challenge for researchers to control stem cells accurately in the lab in order to achieve successful and functional stem cell therapies for patients.

- In our preclinical assessments of stem cell-derived dopamine neurons we noticed that the outcome in animal models varied dramatically, even though the cells were very similar at the time of transplantation. This has been frustrating and puzzling, and has significantly delayed the establishment of clinical cell production protocols, says Malin Parmar who led the study conducted at Lund University as part of the EU network NeuroStemcellRepair.

The Lund experiments use modern global gene expression studies to better understand the path from a stem cell to a dopamine neuron. The data has been generated in close collaboration with a team of scientists at Karolinska Institute lead by Professor Thomas Perlmann, and is closely linked with a second study from the same cluster of scientists. The second study sheds new light on how dopamine neurons are formed during development, and what makes them different from other similar and neighbouring neurons.

This new insight has enabled a streamlined differentiation process resulting in pure populations of dopamine neurons of high quality.

- We have identified a specific set of markers that correlate with high dopaminergic yield and graft function after transplantation in animal models of Parkinson's disease. Guided by this information, we have developed a better and more accurate methods for producing dopamine cells for clinical use in a reproducible way, says first author Agnete Kirkeby.

The new results, published in two back-to-back articles in the leading journal in the field, Cell Stem Cell, propel stem cell therapy for Parkinson's disease towards clinical application. The first transplants are expected to be only a few years away.
-end-
Articles in Cell Stem Cell:

Predictive Markers Guide Differentiation to Improve Graft Outcome in Clinical Translation of hESC-Based Therapy for Parkinson's Disease
DOI: http://dx.doi.org/10.1016/j.stem.2016.09.004

Single-Cell Analysis Reveals a Close Relationship between Differentiating Dopamine and Subthalamic Nucleus Neuronal Lineages
DOI: http://dx.doi.org/10.1016/j.stem.2016.10.003

Contact:

Malin Parmar, Professor in Cellular Neuroscience, Lund University, Sweden, + 46 46 222 06 20, +46 709-823901, malin.parmar@med.lu.se

Agnete Kirkeby, PhD. Human Neural Development, Lund University, Sweden, +46 46 222 05 55, +45 51685353 agnete.kirkeby@med.lu.se

Lund University

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.