Nav: Home

133 million-year-old dinosaur brain fossil found in England

October 28, 2016

SALT LAKE CITY, UT (Oct. 2016) - Soft tissues such as hearts and muscles are very rarely preserved in the fossil record. For that reason, nearly all study of dinosaur soft tissue has to be reconstructed from fossil bones. However, researchers in the United Kingdom recently identified a genuine fossilized brain from a roughly 133 million-year-old dinosaur in Sussex, England. The brain likely belonged to a close relative of the Iguanodon, a spike-handed herbivorous dinosaur. According to the researchers, this is the first example of a natural endocast (in-filling) of the braincase that preserves fossilized brain tissue from any dinosaur.

The unassuming small fossil was originally discovered in 2004 on a beach in the town of Bexhill, but without the rest of the skeleton to help identify it. Only recently was a team of researchers, including Dr David Norman of the University of Cambridge, able to determine it was a fossilized dinosaur brain. Martin Brasier, of the University of Oxford, led the early work on this fossil, before his untimely death in 2014. In order to visualize very small features of the fossil brain Professor Brasier brought in researchers from the University of Western Australia to obtain high resolution images of parts of the brain, revealing its outer layers (meninges) as well as remnants of capillaries (tiny blood vessels) within the cortex of the brain itself. The brain structure and in particular the arrangement of meninges, shows remarkable similarity to modern birds and crocodilians, and likely functioned in fairly similar ways.

In regard to the truly rare preservation of the fossilized dinosaur brain, Dr Norman said "Brain tissues are incredibly fragile and it is quite incredible that the animal died in circumstances that uniquely led to their preservation - through a process of 'pickling' and then mineral replacement". Dr Norman continued, "What we think happened is that this particular dinosaur died in or near a body of stagnant water, and its head ended up partially buried in the sediment at the bottom. Since the water had so little oxygen and was so acidic, the soft tissues of the brain were likely preserved and cast before the rest of its body was buried in the sediment." Circumstances such as these are astonishingly rare in fossilization, meaning this discovery can provide unique insight into the mind of this 133 million-year-old dinosaur.
-end-
Dr Norman and colleagues presented their research at the international meeting of the Society of Vertebrate Paleontology in Salt Lake City, Utah. More details of their work will be released in an upcoming article to be published in a Special Publication of the Geological Society of London*. *Earth System Evolution and Early Life: a Celebration of the Work of Martin Brasier.

Images

Image 1: Surface scanned image of the unassuming 'pebble' recently revealed to be a roughly 133 million-year-old fossil dinosaur brain, discovered in Sussex, England.

Image 2: High resolution magnifications of surface texture from the fossil dinosaur brain, showing the remarkable preservation of the fine network of blood vessels preserved.

About the Society of Vertebrate Paleontology

Founded in 1940 by thirty-four paleontologists, the Society now has more than 2,300 members representing professionals, students, artists, preparators, and others interested in VP. It is organized exclusively for educational and scientific purposes, with the object of advancing the science of vertebrate paleontology.

Journal of Vertebrate Paleontology

The Journal of Vertebrate Paleontology (JVP) is the leading journal of professional vertebrate paleontology and the flagship publication of the Society. It was founded in 1980 by Dr. Jiri Zidek and publishes contributions on all aspects of vertebrate paleontology.

CORRESPONDING AUTHOR CONTACT INFORMATION

David Norman (at the SVP in SLC 26-29 October)
University of Cambridge, Cambridge, United Kingdom
dn102@cam.ac.uk

OTHER EXPERTS NOT DIRECTLY INVOLVED WITH THE STUDY

Ashley Morhardt
Washington University in St. Louis
amorhardt@wustl.edu

Ariana Paulina-Carabajal
Consejo Nacional de Investigaciones Científicas y Técnicas &
Instituto de Investigaciones en Biodiversidad y Medioambiente
a.paulinacarabajal@conicet.gov.ar

Society of Vertebrate Paleontology

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.