Nav: Home

New research paves way for anti-cancer treatment

October 28, 2016

RESEARCHERS at the University of Huddersfield have developed a new lab technique that may aid the development and success rate of an important anti-cancer treatment. Used particularly in cases of liver cancer, polymer beads are injected into arteries that feed a tumour, where they block the blood flow, cutting off the supply of oxygen and nutrients. The beads then also release an anticancer drug directly into the tumour, reducing the systemic side effects.

What developers need is a safe way of predicting what would happen in a patient's body if the beads and the drug they contain are modified. Now the new research has provided them with a method and the findings are described in an article in the European Journal of Pharmaceutical Sciences.

"There was no lab mimic that was able to adequately predict how the drug was released from these drug-eluting beads once they were in the body," said one of the co-authors, University of Huddersfield pharmaceutical science lecturer and researcher Dr Laura Waters. "The article describes a way of doing it in the lab. We compared our results with in vivo data and proved that the method worked."

Dr Waters is supervising the PhD researcher Tanya Swaine, a graduate of the University of Huddersfield whose doctoral project is sponsored by the company BTG, which manufactures the embolization beads that are used in the therapy.

Tanya and co-researchers were able to carry out lab experiments in which a buffer - a liquid that mimics blood - was pumped at different rates through the beads. They also modified the quantities of drug contained in the beads. By comparing their laboratory observations with in vivo data, the research team was able to establish the validity of their simulation technique.

It will be of practical value to any medical researcher working on a bead-based system, said Dr Waters, enabling them to make accurate predictions without running any risks to patients.

Professor Andy Lewis, Director of R&D at BTG and industrial supervisor in the collaboration commented: "We are continually innovating our drug-eluting bead technologies to introduce new features, such as X-ray visibility or biodegradability. It's important from a product development perspective that if we wanted to put other drugs into the beads, or change anything about their chemistry, we could use this system to predict product behaviour before it is given to people."
-end-
The article, Evaluation of ion exchange processes in drug-eluting embolization beads by use of an improved flow-through elution method, by Tanya Swaine, Yiqing Tang, Pedro Garcia, Jasmine John, Laura Waters and Andrew Lewis is in European Journal of Pharmaceutical Sciences, 93. pp. 351-359. ISSN 0928-0987.

University of Huddersfield

Related Chemistry Articles:

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-β neurotoxically impact the brain of patients with Alzheimer's disease.
Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.
Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.
Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.
Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.
Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.
Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.
Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.
The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?
Top 10 chemistry start-ups
Starting a new chemistry-based company is one part discovery, one part risk.
More Chemistry News and Chemistry Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.