Nav: Home

Make fungi think they're starving to stop them having sex, say scientists

October 28, 2019

Tricking fungi into thinking they're starving could be the key to slowing down our evolutionary arms race with fungal pathogens, as hungry fungi don't want to have sex.

That's the conclusion from new research at the University of Bath which for the first time characterised a group of receptors unique to fungi, which prevent them from reproducing sexually.

The research team, from the University of Bath and University of São Paulo - Ribeirão Preto, believe these G-Protein Coupled Receptors (GPCRs) could potentially be a target to slowdown fungi's evolution and the spread of increased virulence and resistance to antifungal chemicals.

Aspergillus fungi only like to have sex when they are well fed and in the dark. Sexual reproduction recombines the DNA of parents to create genetically diverse offspring, which are rapidly disseminated throughout the environment as spores.

This diversity and spread is critical for fungi to adapt to new environments, either promoting disease or evolving antifungal resistance.

Activating the receptors and making the fungi believe they are starving could prevent fungi having sex and therefore slow down their evolution. This could have applications for controlling fungal pathogens in agriculture, as well as in our hospitals.

Dr Neil Brown, from Department of Biology & Biochemistry at the University of Bath, said: "These receptors could be a route to inhibit fungal sex, which may improve the sustainability of disease control. We spend large amounts of time and money developing resistant crops and antifungal chemicals, but there are examples where within a few years of their use fungi have overcome resistant crops or become tolerant of the antifungals.

"Here we could slow down our arms race with the fungal pathogens and therefore increase the shelf life of the resistant crops and antifungals we have invested in. Fungi are excellent at rapidly evolving and spreading through our ecosystem. However, we are slow at producing resistant crops and new antifungal compounds, so they're always eventually going to overcome what we have, but here we could potentially slowdown that cycle to our benefit."

Professor Gustavo Goldman, from the University of São Paulo, Ribeirão Preto, said: "This research is a long-term collaboration between our laboratories in Brazil and the UK, highlighting the importance of international collaboration to tackle an important basic biology problem that can have repercussions in the control of human and plant pathogenic fungi."

The scientists studied the model fungus Aspergillus nidulans. The particular GPCRs they studied are found across most fungi, but are not present in plants, animals or humans, which makes them a good potential target for antifungal agents.

The research team want to continue to study these fungal receptors, and others which promote sexual reproduction in several fungal pathogens. Aiming to understand the molecular and structural details of how these two systems work, hoping to eventually develop reliable ways to inhibit fungal sex.
-end-
The research is published in PLOS Genetics.

The research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), a BBSRC GCRF Accelerator Award, Research England and University of Bath-FAPESP Sprint Award.

University of Bath

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.