Nav: Home

DNA is like everything else: it's not what you have, but how you use it

October 28, 2019

DNA sequences encode information in many different ways. Codons specify the amino acids involved in making a protein. Other DNA sequences specify the start and stop signs for where an RNA begins and ends, or how the RNA transcript is spliced together to make different protein variations from a gene. This coding is static - it does not change. In contrast, other sequences, called Flipons act dynamically to alter the readout of genes. Flipons are sequences that can switch between different DNA conformations, for example from right-handed B-DNA to left-handed Z-DNA, allowing a cell to modify the RNAs it is producing.

Different information is readout from the genome depending on the flipon conformation. Flipons allow a cell to change its response dynamically to environmental challenges. For example, Flipons regulate interferon responses to viruses and in cancer. Families where an RNA editing enzyme called ADAR is unable to recognize a Z-DNA flipon have uncontrolled interferon production, called a type I interferonopathy. In another example, oxidative stress causes base modifications that promote the Z-DNA flipon conformation. In these instances, flipons act as DNA sensor to activate protective pathways to repair and prevent damage to cells.

Flipons are an example of an instructive genetic code, one that directs the compilation of RNA transcripts from the genome. It works in a similar fashion to the way computer codes combine different elements to build a program. By changing conformation, flipons alter editing and splicing of RNA transcripts, allowing the creation of many different outcomes from the same DNA building blocks. The change in programming is dynamic. While the information in DNA is static, cells find many different ways to use that coding to adapt.

Flipons are a way of coding genetic information that affect how organisms evolve. Flipon increase the diversity of genetic programs, resulting more phenotypic variability for natural selection to act upon. This process can be thought of in terms of entropy, where the number of different transcripts produced from a genomic sequence is a measure of its entropy - the more possible transcripts, the higher is the entropy. An organism with higher entropy has an evolutionary advantage. There is a higher likelihood that an adaptation pre-exists for an individual to survive and reproduce when a population faces an environmental challenge.

The flip from one DNA conformation to another trades metabolic energy for genetic information. The relationship between entropy and information is captured in the figure by the term ΔE=kΔI (where E=entropy and I= Shannon Information and k = Boltzmann's constant scaled appropriately). Flipons are examples of the dissipative structures originally described by the Novel Laureate Prigogine in his book "Order out of Chaos" which describes the evolution of living systems.
-end-
About Inside Out Bio

InsideOutBio is a start-up focused on developing a novel class of proprietary therapeutics to 'light' up tumors for the immune system to kill by reprogramming self/nonself pathways within cancer cells. Dr. Herbert leads discovery at InsideOutBio. These statements about InsideOutBio comply with Safe-Harbor laws. They are forward-looking and involve known and unknown risks and uncertainties. They are not guarantees of future performance and undue reliance should not be placed on them.

InsideOutBio

Related Dna Articles:

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
In one direction or the other: That is how DNA is unwound
DNA is like a book, it needs to be opened to be read.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More Dna News and Dna Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab