DNA is like everything else: it's not what you have, but how you use it

October 28, 2019

DNA sequences encode information in many different ways. Codons specify the amino acids involved in making a protein. Other DNA sequences specify the start and stop signs for where an RNA begins and ends, or how the RNA transcript is spliced together to make different protein variations from a gene. This coding is static - it does not change. In contrast, other sequences, called Flipons act dynamically to alter the readout of genes. Flipons are sequences that can switch between different DNA conformations, for example from right-handed B-DNA to left-handed Z-DNA, allowing a cell to modify the RNAs it is producing.

Different information is readout from the genome depending on the flipon conformation. Flipons allow a cell to change its response dynamically to environmental challenges. For example, Flipons regulate interferon responses to viruses and in cancer. Families where an RNA editing enzyme called ADAR is unable to recognize a Z-DNA flipon have uncontrolled interferon production, called a type I interferonopathy. In another example, oxidative stress causes base modifications that promote the Z-DNA flipon conformation. In these instances, flipons act as DNA sensor to activate protective pathways to repair and prevent damage to cells.

Flipons are an example of an instructive genetic code, one that directs the compilation of RNA transcripts from the genome. It works in a similar fashion to the way computer codes combine different elements to build a program. By changing conformation, flipons alter editing and splicing of RNA transcripts, allowing the creation of many different outcomes from the same DNA building blocks. The change in programming is dynamic. While the information in DNA is static, cells find many different ways to use that coding to adapt.

Flipons are a way of coding genetic information that affect how organisms evolve. Flipon increase the diversity of genetic programs, resulting more phenotypic variability for natural selection to act upon. This process can be thought of in terms of entropy, where the number of different transcripts produced from a genomic sequence is a measure of its entropy - the more possible transcripts, the higher is the entropy. An organism with higher entropy has an evolutionary advantage. There is a higher likelihood that an adaptation pre-exists for an individual to survive and reproduce when a population faces an environmental challenge.

The flip from one DNA conformation to another trades metabolic energy for genetic information. The relationship between entropy and information is captured in the figure by the term ΔE=kΔI (where E=entropy and I= Shannon Information and k = Boltzmann's constant scaled appropriately). Flipons are examples of the dissipative structures originally described by the Novel Laureate Prigogine in his book "Order out of Chaos" which describes the evolution of living systems.
About Inside Out Bio

InsideOutBio is a start-up focused on developing a novel class of proprietary therapeutics to 'light' up tumors for the immune system to kill by reprogramming self/nonself pathways within cancer cells. Dr. Herbert leads discovery at InsideOutBio. These statements about InsideOutBio comply with Safe-Harbor laws. They are forward-looking and involve known and unknown risks and uncertainties. They are not guarantees of future performance and undue reliance should not be placed on them.


Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.