Nav: Home

Let there be...a new light

October 28, 2019

Light is the fastest way to distinguish right- and left-handed chiral molecules, which has important applications in chemistry and biology. However, ordinary light only weakly senses molecular handedness. Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Israel Institute of Technology (Technion) and Technische Universitaet Berlin (TU Berlin) have now shown how to generate and characterize an entirely new type of light, synthetic chiral light, which identifies molecules' handedness exceptionally distinctly. The results of their joint work have just appeared in Nature Photonics.

Like our left and right hands, some molecules in nature also have mirror twins. However, while these twin molecules may look similar, some of their properties can be very different. For instance, the handedness - or chirality - of molecules plays an essential role in chemistry, biology, and drug development: while one type of a molecule can cure a disease, its mirror twin - or enantiomer - may be toxic or even lethal.

It is extremely hard to tell opposite chiral molecules apart because they look identical and behave identically, unless they interact with another chiral object. Light has long been the perfect candidate: oscillations of the electromagnetic field draw a chiral helix in space, along the light propagation direction. Depending on whether the helix twirls clockwise or counterclockwise, the light wave is either right- or left-handed. Chiral molecules can interact differently with it. However, the helix pitch, set by the light wavelength, is about a thousand times bigger than the size of a molecule. So, the tiny molecules perceive the light helix rather as a gigantic circle, hardly feeling its chirality at all.

An innovative way around this problem, proposed by MBI, Technion and TU Berlin scientists, is to synthesize a wholly new type of chiral light - one that draws a chiral structure in time, at every single point in space. "The handedness of this new light can be tuned in such a way that one enantiomer will actively interact with it and emit bright light in response, while the opposite enantiomer will not interact with it at all," explains Dr. David Ayuso, MBI researcher and the first author of the article.

The scientists described this new chiral light mathematically and tested their model by simulating how it interacts with chiral molecules. Furthermore, they showed how to "cook" such light in a lab: fusing two converging laser beams that carry light waves of two different frequencies. By tuning the phase shift between the different frequencies, scientists can control the handedness of this synthetic chiral light and thus select with which type of molecules it will strongly interact.

"Synthetic chiral light is described by completely new intrinsic symmetry properties for electromagnetic fields, which is very exciting", says Ofer Neufeld, a PhD student in the Technion's Physics Department, second (equal contribution) author of the paper.

The researchers foresee a variety of potential applications of the new method in chemistry and biology. For example, synthetic chiral light could allow one to monitor chiral chemical reactions in real-time or detect the switch in the molecules' handedness. "We also hope to utilize this new approach to spatially separate molecules with the opposite handedness using ultrafast lasers," concludes Prof. Dr. Olga Smirnova, professor at the TU Berlin and head of an MBI Theory group.
-end-
Authors: David Ayuso, Ofer Neufeld, Andres F. Ordonez, Piero Decleva, Gavriel Lerner, Oren Cohen, Misha Ivanov, and Olga Smirnova co-authored this publication. These authors are affiliated with Max-Born-Institut, Israel Institute of Technology, Technische Universitaet Berlin, Universite degli Studi di Trieste, Humboldt-Universitaet zu Berlin and Imperial College London.

Forschungsverbund Berlin

Related Biology Articles:

Structural biology: Special delivery
Bulky globular proteins require specialized transport systems for insertion into membranes.
Cell biology: All in a flash!
Scientists of Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a tool to eliminate essential proteins from cells with a flash of light.
A biology boost
Assistance during the first years of a biology major leads to higher retention of first-generation students.
Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
More Biology News and Biology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.